$$\textbf{Step 1: Finding the derivative upto three orders.}$$
$$f(x)=x^{3}+x^{2}f^{'}(1)+xf^{''}(2)+xf^{'''}(3)$$
$$\text{Differentiating it with respect to x ,}$$
$$f^{'}(x)=3x^{2}+2xf^{'}(1)+f^{''}(2)$$ $$\text{...(i)}$$
$$\text{Differentiating (i) with respect to x ,}$$
$$f^{''}(x)=6x+2f^{'}(1)$$ $$\text{...(ii)}$$
$$\text{Differentiating (ii) with respect to x ,}$$
$$f^{'''}(x)=6$$ $$\text{...(iii)}$$
$$\textbf{Step 2: Solving for exact values.}$$
$$\text{From (i),}$$
$$f^{'}(1)=3+2f^{'}(1)+f^{''}(2)$$ $$\text{(Replacing x by 1 in (i))}$$
$$\Rightarrow f^{'}(1)+f^{''}(2)+3=0$$ $$\text{...(iv)}$$
$$\text{From (ii)}$$,
$$f{''}(2)=12+2f{'}(1)$$ $$\text{(Replacing x by 2 in (ii))}$$
$$\text{On substituting it in eq. (iv), we get,}$$
$$-f^{'}(1) -3=12+2f^{'}(1)$$
$$\Rightarrow 3f^{'}(1)=-15$$
$$\Rightarrow f^{'}(1)=-5$$ $$\text{...(v)}$$
$$\text{Putting the value of}$$ $$f^{'}(1)$$ $$\text{we get}$$ $$f{''}(2)=12+2f{'}(1),$$ $$\text{we get}$$,
$$f^{''}(2)=12+2 \times (-5)$$
$$\Rightarrow f^{''}(2)=12-10=2$$ $$\text{...(vi)}$$
$$\textbf{Step 3: Substituting these values in given function.}$$
$$\therefore$$ $$f(x)=x^{3}-5x^{2}+2x+6$$
$$\text{Putting x=2 in above equation,}$$
$$\therefore$$ $$f(2)= 8-20+4+6=-2$$
$$\textbf{Hence the value of}$$ $$\mathbf{f(2)= -2}$$.