Self Studies

Relations and Functions Test - 63

Result Self Studies

Relations and Functions Test - 63
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=\quad cos(\log { \quad x } )$$, then
    $$f({ x }^{ 2 })f({ y }^{ 2 }) -\frac { 1 }{ 2 } \left[ f(\frac { { x }^{ 2 } }{ 2 } )+f(\frac { { x }^{ 2 } }{ { y }^{ 2 } } ) \right] $$ has the value :
    Solution

  • Question 2
    1 / -0
    If $$f\left( x+\frac { 1 }{ 2 }  \right) +f\left( x-\frac { 1 }{ 2 }  \right) =f\left( x \right) ,\quad \forall x\in \quad R$$, then $$f\left( x-3 \right) +f\left( x+3 \right)$$ is equal to 
    Solution

  • Question 3
    1 / -0
    $$f(x) = \frac{{1 - x}}{{1 + x}}$$ for $$x \ne  - 1$$ then $$f(x) + \left( {\frac{1}{x}} \right)$$ is $$(for\,\,x \ne 0)$$
  • Question 4
    1 / -0
    Let $$A$$ be set of first ten natural numbers and $$R$$ be a relation on $$A$$ defined by (x , y) $$\in$$ $$R$$ $$\Rightarrow$$ x + 2y = 10 , then domain of $$R$$ is
    Solution
    $$\begin{aligned} A &=\{1,2,3, \cdots \cdots, 10\} \\ R &=\{(x, y): x+2 y=10, x, y \in A\} \\ & \therefore y=\dfrac{10-x}{2} \\ R &=\{(2,4),(4,3),(6,2),(8,1)\} \\ \therefore & \text { Domain of } R \text { is }\{2,4,6,8\} \end{aligned}$$
    Correct option is (B).
  • Question 5
    1 / -0
    If  $$f(x)=x^2-5x+6$$, find $$f(A)$$ if $$A=\begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$.
    Solution
    $$f(x)=x^{2}-5 x+6$$
    $$f(A)=A^{2}-5 A+6$$
    $$A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$$
    $$\begin{aligned} A^{2} &=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right] \\ &=\left[\begin{array}{ccc}4+0+1 & 0+0-1 & 2+0+0 \\ 4+2+3 & 0+1-3 & 2+3+0 \\ 2-2+0 & 0-1+0 & 1-3+0\end{array}\right] \\ \end{aligned}$$
    $$=\left[\begin{array}{ccc}5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2\end{array}\right]$$
    $$5 A=\left[\begin{array}{lll}10 & 0 & 5 \\ 10 & 5 & 15 \\ 5 & -5 & 0\end{array}\right]$$
    On Putting in $$f(A)$$
    $$\begin{aligned} f(A) &=\left[\begin{array}{ccc}5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2\end{array}\right]-\left[\begin{array}{ccc}10 & 0 & 5 \\ 10 & 5 & 15 \\ 5 & -5 & 0\end{array}\right]+\left[\begin{array}{ccc}6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6\end{array}\right] \\ &=\left[\begin{array}{ccc}5-10+6 & -1+0+0 & 2-5+0 \\ 9-10+0 & -2-5+6 & 5-15+0 \\ 0-5+0 & -1+5+0 & -2+0+6\end{array}\right] \\ &=\left[\begin{array}{ccc}1 & -1 & -3 \\-1 & -1 & -10\\ -5 & 4 & -4 \end{array}\right] \end{aligned}$$
  • Question 6
    1 / -0
    If $$ f ( x ) = x ^ { 3 } + x ^ { 2 } f ^ { \prime } ( 1 ) + x f ^ { \prime \prime } ( 2 ) + f ^ { \prime \prime \prime } ( 3 ) . $$ Then $$ f ( 2 ) $$ is
    Solution
    $$\textbf{Step 1: Finding the derivative upto three orders.}$$
                    $$f(x)=x^{3}+x^{2}f^{'}(1)+xf^{''}(2)+xf^{'''}(3)$$
                    $$\text{Differentiating it with respect to x ,}$$
                    $$f^{'}(x)=3x^{2}+2xf^{'}(1)+f^{''}(2)$$               $$\text{...(i)}$$
                    $$\text{Differentiating (i) with respect to x ,}$$
                    $$f^{''}(x)=6x+2f^{'}(1)$$                                  $$\text{...(ii)}$$
                    $$\text{Differentiating (ii) with respect to x ,}$$
                    $$f^{'''}(x)=6$$                                                    $$\text{...(iii)}$$
    $$\textbf{Step 2: Solving for exact values.}$$
                    $$\text{From (i),}$$
                    $$f^{'}(1)=3+2f^{'}(1)+f^{''}(2)$$              $$\text{(Replacing x by 1 in (i))}$$
                    $$\Rightarrow f^{'}(1)+f^{''}(2)+3=0$$                          $$\text{...(iv)}$$
                    $$\text{From (ii)}$$,
                    $$f{''}(2)=12+2f{'}(1)$$                           $$\text{(Replacing x by 2 in (ii))}$$
                    $$\text{On substituting it in eq. (iv), we get,}$$
                    $$-f^{'}(1) -3=12+2f^{'}(1)$$
                    $$\Rightarrow 3f^{'}(1)=-15$$     
                    $$\Rightarrow f^{'}(1)=-5$$                                             $$\text{...(v)}$$
                    $$\text{Putting the value of}$$ $$f^{'}(1)$$  $$\text{we get}$$ $$f{''}(2)=12+2f{'}(1),$$ $$\text{we get}$$,
                    $$f^{''}(2)=12+2 \times (-5)$$
                    $$\Rightarrow f^{''}(2)=12-10=2$$                             $$\text{...(vi)}$$
    $$\textbf{Step 3: Substituting these values in given function.}$$
                    $$\therefore$$ $$f(x)=x^{3}-5x^{2}+2x+6$$
                    $$\text{Putting x=2 in above equation,}$$
                    $$\therefore$$ $$f(2)= 8-20+4+6=-2$$
    $$\textbf{Hence the value of}$$ $$\mathbf{f(2)= -2}$$.
  • Question 7
    1 / -0
    If f(x) =$$\dfrac{1 - x}{1 + x} , then f [f (cos 2\theta)] =$$
    Solution

  • Question 8
    1 / -0
    If f (x) = $$\dfrac{x -|x|}{|x|}, then f (-1) = $$
    Solution

  • Question 9
    1 / -0
    If $$f\left( x \right) ={ x }^{ n }$$, then the value of $$f(1)-\dfrac { f'\left( 1 \right)  }{ 1! } +\dfrac { f''\left( 1 \right)  }{ 2! } -\dfrac { f'''\left( 1 \right)  }{ 3! } +...+\dfrac { \left( -1 \right) ^{ n }{ f }^{ n }\left( 1 \right)  }{ n! } $$ is 
    Solution

  • Question 10
    1 / -0
    Let $$F(x)$$ be the primitive of $$\cfrac{3x+2}{\sqrt{x-9}}$$ with respect $$'x'$$. If $$F(10)=60$$. Then the sum of digits of the value of $$F(13)$$ is
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now