Self Studies

Relations and Functions Test - 65

Result Self Studies

Relations and Functions Test - 65
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Events A and B associated with an experiment  are said to be independent iff
    Solution

  • Question 2
    1 / -0
    If $$f(x)=1+x+\dfrac { { x }^{ 2 } }{ 2 } +......+\dfrac { { x }^{ 100 } }{ 100 } ,$$ then I'(1) is equal to 
    Solution

  • Question 3
    1 / -0
    If $$h=\left\{ ((x,y),(x-y, x+y))/ x,y \epsilon  N \right\}  $$ is a relation on NxN, then domain of h

  • Question 4
    1 / -0
    If y = f (x) = $$\dfrac{ax -+ b}{cx - a}$$, then x is equal to 
  • Question 5
    1 / -0
    If $$f\left(x\right)+2f\left(1-x\right)={ x }^{ 2 }+2$$ ,  $$ \forall  x\in R$$,then$$ f\left (x\right)=$$ 
    Solution

  • Question 6
    1 / -0
    If the Period  of $$f(x)=\dfrac { cos\left( sin\left( nx \right)  \right)  }{ tan\left( \dfrac { x }{ n }  \right)  } ,n\epsilon N$$ is $$6\pi $$ , then n is equal to 
    Solution

  • Question 7
    1 / -0
    If $$A = \left \{1, 2, 3, 4, 5\right \}$$ then
    Solution

  • Question 8
    1 / -0
    If $$A=\left\{1,2,4  \right\}$$, $$B=\left\{1,4,6,9  \right\}$$ and $$R$$ is a relation from $$A$$ to $$B$$ defined by $$x$$ is greater than $$y$$. The rangle of $$R$$ is :
    Solution

  • Question 9
    1 / -0
    $$f(x)$$ is a linear function. If $$f(x)=-1$$ and $$f(2)=14$$ find the value of $$f(15)$$
    Solution

  • Question 10
    1 / -0
    If  $$f ( x ) = \log _ { a } x$$  and  $$F ( x ) = a ^ { x } ,$$  then  $$F [ f ( x ) ]$$  is
    Solution
     $$\textbf{Step 1 : Find the required function}$$

                      $$\text{Given , } f(x) = \log_{a}{x} \text{ and }$$ $$ F(x) = a^x $$
                                    
                      $$\therefore   F[f(x)] = F ( \log_{a}{x} ))$$
                                         $$ =   a^{\log_{a}{x}}$$
                                         $$ = x $$              $$\boldsymbol{[\because e^{\log_{e}{a}} = a]}$$
                      
                      $$\therefore f[F(x)] = f[ a^x] $$
                                         $$ = \log_{a}{a^x} $$
                                         $$ = x$$                $$\boldsymbol {[ \because \log_{e}{e^a} = a]}$$ 

                      $$\Rightarrow   F[f(x)] = f [ F{x} ]$$

    $$\textbf{Hence , option A is correct}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now