Self Studies

Trigonometric Functions Test 15

Result Self Studies

Trigonometric Functions Test 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\alpha cos^23\theta +\beta cos^4\theta= 16 cos^6\theta + 9 cos^2\theta$$ is an identity then-
    Solution
    $$\alpha\cos^2 3\theta+\beta\cos^4\theta=16\cos^6\theta+9\cos^2\theta$$

    $$\Rightarrow$$  $$\alpha(4\cos^3\theta-3\cos\theta)^2+\beta\cos^4\theta=16\cos^6\theta+9\cos^2\theta$$

    $$\Rightarrow$$  $$\alpha(16\cos^6\theta+9\cos^2\theta-24\cos^4\theta)+\beta\cos^4\theta=16\cos^6\theta+9\cos^2\theta$$

    $$\Rightarrow$$  $$\alpha(16\cos^6\theta+9\cos^2\theta)-24\alpha\cos^4\theta+\beta\cos^4\theta=(16\cos^6\theta+9\cos^2\theta)$$

    $$\Rightarrow$$  $$\alpha(16\cos^6\theta+9\cos^2\theta)-\cos^4\theta(24\alpha-\beta)=(16\cos^6\theta+9\cos^2\theta)$$

    $$\Rightarrow$$  $$\alpha(16\cos^6\theta+9\cos^2\theta)-\cos^4\theta(24\alpha-\beta)=(16\cos^6\theta+9\cos^2\theta)+\cos^4\theta\times 0$$

    Now, we are going to compare,
    $$\alpha(16\cos^6+9\cos^2\theta)=16\cos^6+9\cos^2\theta$$
    $$\therefore$$  $$\alpha=1$$

    Again,
    $$\Rightarrow$$  $$-\cos^4\theta(24\alpha-\beta)=\cos^4\theta\times 0$$
    $$\Rightarrow$$  $$24(1)-\beta=0$$                     [ Since, $$\alpha=1$$  ]
    $$\Rightarrow$$  $$\beta=24$$

    $$\therefore$$   $$\alpha=1$$ and $$\beta=24$$
  • Question 2
    1 / -0
    If $$\sin \left( {\pi \cos x} \right) = \cos \left( {\pi \sin x} \right)$$, then $$\sin 2x = $$
    Solution
    Given $$\sin(\pi\cos x)=\cos(\pi\sin x)$$
    $$\sin(\pi cosx)=\sin(\dfrac{\pi}{2}-\pi\sin x)$$
    $$\pi \cos x=\dfrac{\pi}{2}-\pi \sin x $$
    $$\cos x+\sin x=\dfrac{1}{2}$$
    Squaring on both sides
    $$\sin^2x+\cos^2x+2\sin x \cos x= \dfrac{1}{4}$$
    $$1+2\sin x\cos x=\dfrac{1}{4}$$
    $$\sin 2x=-\dfrac{3}{4}$$
  • Question 3
    1 / -0
    If $$x \in (\pi, 2\pi)$$ and $$\cos x + \sin x = \dfrac{1}{2}$$, then the value of $$\tan x$$ is
    Solution
    $$\cos x+\sin x=\dfrac{1}{2}$$        $$x\in (\pi, 2\pi)$$
    divide by $$\cos x$$
    $$1+\dfrac{\sin x}{\cos x}=\dfrac{1}{2\cos x}$$
    $$\Rightarrow 1+\tan x=\dfrac{1}{2}\sec x$$ [we know $$\sec^2x-\tan^2x=1$$]
    $$\Rightarrow 1+\tan x=\dfrac{1}{2}\sqrt{1+\tan^2x}$$
    Let $$\tan x=t$$
    $$1+t=\dfrac{\sqrt{1+t^2}}{2}$$
    $$(2(1+t))^2=1+t^2$$
    $$\Rightarrow 3t^2+8t+3=0$$
    $$\therefore t=\dfrac{-8\pm \sqrt{8^2-4(3)(3)}}{2\times 3}$$
    $$\Rightarrow \dfrac{-8\pm 2\sqrt{7}}{6}$$
    $$\Rightarrow t=\dfrac{-4\pm \sqrt{7}}{3}$$
    $$\therefore \tan x=\dfrac{-4\pm \sqrt{7}}{3}$$ but $$x\in (\pi, 2\pi)$$
    $$\therefore \tan x=\dfrac{-4+\sqrt{7}}{3}$$.
  • Question 4
    1 / -0
    If $$\dfrac{{\left( {1 - \cos A} \right)}}{2} = x$$ then find the value of x is
    Solution
    $$\implies\cfrac { 1-\cos A }{ 2 } =x$$
    $$\implies\cfrac { 2{ \sin }^{ 2 }\cfrac { A }{ 2 }  }{ 2 } =x$$
    $$\implies x={ \sin }^{ 2 }\cfrac { A }{ 2 } $$
  • Question 5
    1 / -0
    If  $$x=\dfrac{{2\left( {\sin {1^0} + \sin {2^0} + \sin {3^0} + ....... + \sin {{89}^0}} \right)}}{{2\left( {\cos {1^0} + \cos {2^0} + .............\cos {{44}^0}} \right) + 1}}$$ , then the value of $${\log_x}2$$ is equal
    Solution

  • Question 6
    1 / -0
    A flag staff on the top of the tower $$80\ meter$$ high, subtends an angle $$\tan^{-1}\left(\dfrac{1}{9}\right)$$ at point on the ground $$100\ meters$$ away from the foot of the tower. Find the height of the flag-staff.
    Solution
    $$\rightarrow$$ Let, height of the flag stuff be $$x$$.
    $$\rightarrow$$ Angle subtended by the tower.
    $$\therefore \theta = \tan^{-1} \left( \dfrac{80}{100} \right)= 38.7 $$ degree.
    $$\rightarrow $$ Angle subtended by the flag stuff 
    $$\therefore \tan^{-1} (7/9)= 6.3$$ degree.
    $$\rightarrow $$ total angle subtended $$= 38.7 + 6.3$$
    $$= 45$$ degree.
    $$\rightarrow $$ As shown in triangle 
    $$\tan   45= \dfrac{x +80}{100}$$
    $$\therefore 1 =\dfrac{x+80}{100} $$ 
    $$\therefore x= 100-80$$
    $$\therefore x= 20$$

  • Question 7
    1 / -0
    Total number of solution of the equation $$3x+2\tan x=\dfrac {5\pi}{2}$$ in $$x\ \epsilon [0,2\pi]$$ is equal to
    Solution
    Given equation $$3x+2\tan x=\dfrac{5\pi}{2}$$
    $$2\tan x =5\dfrac{\pi}{2}-3x$$
    $$\tan x=\dfrac{5\pi}{4}-\dfrac{3x}{2}$$
    $$y=\tan x=\dfrac{5\pi}{4}-\dfrac{3x}{2}$$
    Using graph we find point intersection of 
    $$y=\tan x;y=\dfrac{5\pi}{4}-\dfrac{3x}{2}\left(m=-\dfrac{3}{2};C=\dfrac{5\pi}{4}\right)$$
    $$x-intercept :y=0;$$
    $$\dfrac{3x}{2}=\dfrac{5\pi}{4}\left(x=\dfrac{5\pi}{6},y=0\right)$$
    $$y-intercept\, x=0;$$
    $$y=\dfrac{5\pi}{4}\left(x=0;y=\dfrac{5\pi}{4}\right)$$
     Given region of graph $$[0,2\pi]$$
    Number of solution = Number of intersections
    $$='3'$$
    $$\boxed{Number\, of \, solutions=3}$$

  • Question 8
    1 / -0
    $$\sin^{-1}x+\sin^{-1}\dfrac{1}{x}+\cos^{-1}x+\cos^{-1}\dfrac{1}{x}, x\notin \pm 1$$ is equal to?
    Solution

  • Question 9
    1 / -0
    Find  $$\dfrac{\sin^2A-\sin^2B}{\sin A\cos A-\sin B\cos B}=?$$.
    Solution
    $$\cfrac { { \sin }^{ 2 }A-{ \sin }^{ 2 }B }{ \sin A\cos A-\sin B\cos B } =\cfrac { \cfrac { 1-\cos 2 A }{ 2 } -\cfrac { 1-\cos 2 B }{ 2 }  }{ \cfrac { 1 }{ 2 } (\sin 2 A-\sin 2 B) } $$
    $$=\cfrac { 1-\cos 2 A-1+\cos 2 B }{ \sin 2 A-\sin 2 B } $$
    $$=\cfrac {- (\cos 2 A-\cos 2 B) }{ \sin 2 B-\sin 2 A } $$
    $$=\cfrac { -\{ -2\sin(\cfrac { 2A+2B }{ 2 } )\sin(\cfrac { 2A-2B }{ 2 } )\}  }{ \sin 2B-\sin 2A } $$
    $$==\cfrac { -\{ -2\sin(\cfrac { 2A+2B }{ 2 } )\sin(\cfrac { 2A-2B }{ 2 } )\}  }{ 2\sin(\cfrac { 2A-2B }{ 2 } )\cos(\cfrac { 2A+2B }{ 2 } ) } $$
    $$=\cfrac { \sin(A+B) }{ \cos(A+B) } $$
    $$=\tan(A+B)$$
  • Question 10
    1 / -0
    If $$\tan\theta=\dfrac{a}{b}$$ then $$\dfrac{a\sin\theta-b\cos\theta}{a\sin\theta +b\cos\theta}=$$
    Solution
    $$\tan\theta =\cfrac { a }{ b } ,$$ then $$\cfrac { a \sin\theta -b \cos\theta  }{ a \sin\theta +b \cos }=\cfrac { \cfrac { a \sin\theta  }{ b \cos\theta  } -1 }{ \cfrac { a \sin\theta  }{ b \cos\theta  } +1 }  $$
    $$=\cfrac { \cfrac { a }{ b } \tan\theta -1 }{ \cfrac { a }{ b } \tan\theta +1 } $$
    $$=\cfrac { \cfrac { { a }^{ 2 } }{ { b }^{ 2 } } -1 }{ \cfrac { { a }^{ 2 } }{ { b }^{ 2 } } +1 } $$
    $$=\cfrac { { a }^{ 2 }-{ b }^{ 2 } }{ { a }^{ 2 }+{ b }^{ 2 } } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now