Self Studies

Trigonometric Functions Test 17

Result Self Studies

Trigonometric Functions Test 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$cos \alpha + cos \beta = a , \, sin \alpha + sin \beta = b \, and \, \alpha - \beta  = 2 \theta \, then \, \dfrac{cos \, 3 \theta }{cos \, \theta}$$ =
    Solution
    we have
    $$\cos \alpha+\cos \beta=a$$
    $$\sin \alpha+\sin \beta=b$$

    $$\alpha-\beta=2\theta$$

    so, $$(\cos \alpha+\cos \beta)^2=a^2$$

    $$\cos^2\alpha+\cos^2\beta+2\cos \alpha\cos \beta=a^2$$-----(i)

    and $$(\sin \alpha+\sin \beta)^2=b^2$$

    $$\sin^2\alpha+\sin^2\beta+2\sin \alpha\sin \beta=b^2$$-----(ii)

    adding (i) and (ii)

    $$2+\cos (\alpha-\beta)=a^2+b^2$$    $$\left[\sin^2\alpha+\cos^2\alpha=1\\\sin^2\beta+\cos^2\beta=1\\ \cos\alpha \cos \beta+\sin \alpha \sin \beta=\cos (\alpha-\beta)\right.$$

    $$a^2+b^2=2+2\cos (\alpha-\beta)$$

    $$=2+2\cos^2\theta$$

    $$\dfrac{\cos 3\theta}{\cos \theta} =\dfrac{4\cos^3\theta.3\cos \theta}{\cos \theta}$$

    $$=4\cos^2\theta-3\rightarrow 4\cos^2\theta=3$$------(iii)

    $$a^2+b^2=2+2(2\cos^2\theta-1)$$

     $$=2+4\cos^2\theta-2$$

    $$\therefore 4\cos^2\theta=a^2+b^2$$ from (iii)

    $$\therefore 3=a^2+b^2$$

    $$a^2+b^2-3=0$$
  • Question 2
    1 / -0
    If $$a$$, $$b$$, $$c$$, $$t$$ are the solution of the equation $$\tan\left(\theta+\dfrac{\pi}{4}\right)=3\ tan 3\theta$$, no two of which have equal tangents . Then, the value of $$\tan a+\tan b+\tan c+\tan t=$$
    Solution

    Consider the given equation,

    $$\tan \left( \dfrac{\pi }{4}+\theta  \right)=3\tan 3\theta $$

    Using identity ,


      $$ \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\,\,\,\And \tan 3A=\dfrac{3\tan A-{{\tan }^{3}}A}{1-3{{\tan }^{2}}A} $$

     $$ \Rightarrow \dfrac{\tan \left( \dfrac{\pi }{4} \right)+\tan \theta }{1-\tan \left( \dfrac{\pi }{4} \right)\tan \theta }=3\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \right) $$

     $$ \Rightarrow \dfrac{1+\tan \theta }{1-\tan \theta }=\dfrac{9\tan \theta-3{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } $$

     $$ \Rightarrow \left( 1+\tan \theta  \right)\left( 1-3{{\tan }^{2}}\theta  \right)=\left( 1-\tan \theta  \right)\left( 9\tan \theta -3{{\tan }^{3}}\theta  \right) $$

     $$ \Rightarrow 3{{\tan }^{4}}\theta -6{{\tan }^{2}}\theta +8\tan \theta -1=0 $$


    As $$a,b,c,t,=$$ are roots of this equation ,

    Hence, sum of roots ,

    $$\tan \left( a \right)+\tan \left( b\right)+\tan \left( c\right)+\tan \left(t\right)=$$ $$-\dfrac{coeficient\,of\,{{\tan }^{3}}\theta }{coeficient\,of\,{{\tan }^{4}}\theta }$$ =$$-\dfrac{0}{1}$$

    $$\tan \left( a\right)+\tan \left(b\right)+\tan \left( c\right)+\tan \left( t \right)=0$$


    Hence, this is the answer.

  • Question 3
    1 / -0
    If $$\alpha$$ is a root of $$25\cos^2\theta +5\cos\theta -12=0, \dfrac{\pi}{2} < \alpha < \pi$$, then $$\sin 2θ $$ is equal to?
    Solution

  • Question 4
    1 / -0
    The value of $$\sin {27^ \circ } - \cos {27^ \circ }$$ is equal to 
    Solution

    $$ \sin {{27}^{0}}-\cos {{27}^{0}} $$

    $$ \Rightarrow \sin {{27}^{0}}-\cos \left( {{90}^{0}}-{{63}^{0}} \right) $$

    $$ \Rightarrow \sin {{27}^{0}}-\sin {{63}^{0}} $$

    $$ \Rightarrow 2\cos \left( \dfrac{{{27}^{0}}+{{63}^{0}}}{2} \right)\sin \left( \dfrac{{{27}^{0}}-{{63}^{0}}}{2} \right) $$

    $$ \Rightarrow 2\cos {{45}^{0}}\sin \left( -{{36}^{0}} \right) $$

    $$ \Rightarrow 2\times \dfrac{1}{\sqrt{2}}\times -\left[ \dfrac{\sqrt{10-2\sqrt{5}}}{4} \right] $$

    $$ \Rightarrow -\dfrac{1}{\sqrt{2}}\times \sqrt{2}\left( \dfrac{\sqrt{5-\sqrt{5}}}{2} \right) $$

    $$ \Rightarrow -\dfrac{\sqrt{5-\sqrt{5}}}{2} $$

    Hence, this is the answer

    option $$(B)$$ is correct.

  • Question 5
    1 / -0
    The value of $${\cos ^2}{73^ \circ } + {\cos ^2}{47^ \circ } - {\sin ^2}{43^ \circ } + {\sin ^2}{107^ \circ }$$ is equal to :
    Solution

    Consider the given equation.

    $$ cos^2{{73}^{0}}+co{{s}^{2}}{{47}^{0}}-si{{n}^{2}}{{43}^{0}}+si{{n}^{2}}{{107}^{0}} $$

     $$ \Rightarrow co{{s}^{2}}{{73}^{0}}+co{{s}^{2}}{{47}^{0}}-si{{n}^{2}}\left( {{90}^{0}}-{{47}^{0}} \right)+si{{n}^{2}}\left( {{180}^{0}}-{{73}^{0}} \right) $$

     $$ \Rightarrow \left( co{{s}^{2}}{{73}^{0}}+{{\sin }^{2}}{{73}^{0}} \right)+co{{s}^{2}}{{47}^{0}}-{{\cos }^{2}}{{47}^{0}} $$

     $$ \Rightarrow 1 $$


    Hence, this is the answer.
  • Question 6
    1 / -0
    If $$\tan \theta  + \tan 4\theta  + \tan 7 = \tan \theta \tan 4\theta \tan 7\theta ,\,\,then\,\,\theta  = $$
    Solution
    We know,
    $$\tan\theta+\tan 4\theta+\tan 7\theta=\tan\theta\tan 4\theta\tan 7\theta$$
    occurs only if $$\theta,4\theta,7\theta$$ are angles of a triangle.
    Therefore,
    sum of all angles of a triangle  is $$\pi.$$
    $$=>\theta+4\theta+7\theta=\pi$$
    $$=>\theta=\dfrac{n\pi}{12}$$
  • Question 7
    1 / -0
    If $$\tan \theta + \sec \theta = \sqrt{3}$$, then the principal value of $$\left(\theta + \dfrac{\pi}{6}\right)$$ is
    Solution

  • Question 8
    1 / -0
    $$\cot{\dfrac{\pi}{20}}\cot{\dfrac{3\pi}{20}}\cot{\dfrac{5\pi}{20}}\cot{\dfrac{7\pi}{20}}\cot{\dfrac{9\pi}{20}}$$ is equal to 
    Solution
    We know that $$\pi={180}^{\circ}$$
    $$\dfrac{\pi}{20}={9}^{\circ}$$, $$\dfrac{3\pi}{20}={27}^{\circ}$$, $$\dfrac{5\pi}{20}={45}^{\circ}$$, $$\dfrac{7\pi}{20}={63}^{\circ}$$, $$\dfrac{9\pi}{20}={81}^{\circ}$$

    $$\cot{\dfrac{\pi}{20}}\cot{\dfrac{3\pi}{20}}\cot{\dfrac{5\pi}{20}}\cot{\dfrac{7\pi}{20}}\cot{\dfrac{9\pi}{20}}$$

    $$=\cot{{9}^{\circ}}\cot{{27}^{\circ}}\cot{{45}^{\circ}}\cot{{63}^{\circ}}\cot{{81}^{\circ}}$$

    $$=\cot{{9}^{\circ}}\cot{{27}^{\circ}}\times 1\times\cot{\left({90}^{\circ}-{27}^{\circ}\right)}\cot{\left({90}^{\circ}-{9}^{\circ}\right)}$$

    $$=\cot{{9}^{\circ}}\cot{{27}^{\circ}}\tan{{9}^{\circ}}\tan{{27}^{\circ}}$$

    $$=\cot{{9}^{\circ}}\tan{{9}^{\circ}}\cot{{27}^{\circ}}\tan{{27}^{\circ}}$$

    $$=1$$ since $$\tan{\theta}\cot{\theta}=1$$

  • Question 9
    1 / -0
    If $$4\ \sin^{2}x-1=0$$ and $$0 < x < 2 \pi$$, then positive values of $$x$$ are 
    Solution

  • Question 10
    1 / -0
    If $$\sin { x } sin{ \left( { 60 }^{ O }+x \right) .\left( { 60 }^{ O }-x \right)  }=\frac { 1 }{ 8 } $$ then$$x=$$
    Solution
    Given

    $$\sin x\sin (60^{\circ} +x) \sin (60^{\circ}-x)=\dfrac 18$$

    $$\sin x\left( \sin ^2 60^{\circ} -\sin ^2 x\right)$$

                        $$\bigg( \sin (A+B)\sin (A-B) =\sin ^2 A-\sin ^2B\bigg)$$

    $$\sin x\left(\dfrac 34 -\sin ^2 x\right)=\dfrac 18$$

    $$\left(\dfrac {3\sin x-4\sin ^3 x}{4}\right)=\dfrac 18$$

    $$\sin 3x =\dfrac 12$$

                         $$\bigg(\sin 3x=3\sin x-4\sin ^3 x\bigg)$$

    $$\implies 3x=n\pi + (-1)^n \dfrac \pi 6$$

    $$\implies x=\dfrac {n \pi}3 + (-1)^n \dfrac \pi {18}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now