Consider the given equation,
$$\tan \left( \dfrac{\pi }{4}+\theta \right)=3\tan 3\theta $$
Using identity ,
$$ \tan \left( A+B
\right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\,\,\,\And \tan 3A=\dfrac{3\tan
A-{{\tan }^{3}}A}{1-3{{\tan }^{2}}A} $$
$$ \Rightarrow \dfrac{\tan
\left( \dfrac{\pi }{4} \right)+\tan \theta }{1-\tan \left( \dfrac{\pi }{4}
\right)\tan \theta }=3\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta
}{1-3{{\tan }^{2}}\theta } \right) $$
$$ \Rightarrow \dfrac{1+\tan
\theta }{1-\tan \theta }=\dfrac{9\tan \theta-3{{\tan }^{3}}\theta }{1-3{{\tan
}^{2}}\theta } $$
$$ \Rightarrow \left(
1+\tan \theta \right)\left( 1-3{{\tan
}^{2}}\theta \right)=\left( 1-\tan
\theta \right)\left( 9\tan \theta
-3{{\tan }^{3}}\theta \right) $$
$$ \Rightarrow
3{{\tan }^{4}}\theta -6{{\tan }^{2}}\theta +8\tan \theta -1=0 $$
As $$a,b,c,t,=$$ are roots of this equation ,
Hence, sum of roots ,
$$\tan \left( a \right)+\tan \left( b\right)+\tan \left( c\right)+\tan \left(t\right)=$$ $$-\dfrac{coeficient\,of\,{{\tan
}^{3}}\theta }{coeficient\,of\,{{\tan }^{4}}\theta }$$ =$$-\dfrac{0}{1}$$
$$\tan \left( a\right)+\tan \left(b\right)+\tan \left( c\right)+\tan \left( t
\right)=0$$
Hence, this is the answer.