Self Studies

Trigonometric Functions Test 18

Result Self Studies

Trigonometric Functions Test 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The no of solution of the equation: $$1+\sin { x } \cos { x } =2\sin { x } \cos { x } $$ in $$x$$, $$\left[ 0,40 \right] $$ are
    Solution
    $$ 1+sinx cosx = 2sinx cosx $$
    $$ x\epsilon  [ 0,40]$$
    $$ 1 = \dfrac{2}{2}sinx cosx $$
    $$ [\because 2 sinx cosx - sin2x]$$
    $$ 2 = sin 2x.$$
    $$ 2x = \dfrac{1}{2}sin^{-1}(2)$$
    $$ x = \dfrac{1}{2}sin^{-1}(2)$$

  • Question 2
    1 / -0
    $$\sin^2 20+\sin^270$$ is equal to_____
    Solution
    $$\sin^2 20^o+\sin^270^o=\sin^2 20^o+\sin^2(90^o-20^o)=\sin^220^o+\cos^220^o=1$$
  • Question 3
    1 / -0
    Find number of solutions to the equation:$$\left[ \sin { x+\cos { x }  }  \right] =3+\left[ -\sin { x }  \right] +\left[ -\cos { x }  \right]$$
    Solution

  • Question 4
    1 / -0
    The number of solutions of the equation $$|\cot x|=\cot x+\dfrac{1}{\sin x}(0\le x\le 2\pi)$$ is :
    Solution
    $$(\cot x)=\cot x+\dfrac{1}{\sin x}$$                   $$0\le x\le 2\pi$$
    $$0\pi\le x < \dfrac{3\pi}{2}$$ and $$0\le x\le \dfrac{\pi}{2}$$
    $$\cot x=\cot x+\dfrac{1}{\sin x}$$
    $$\sin x=0$$
    $$x=0$$
    $$2\cot x=\dfrac{1}{\sin x}$$
    $$\dfrac{2}{\sin x}\cos x=\dfrac{1}{\sin x}$$
    $$\sin x=1\Rightarrow x=\dfrac{\pi}{2}$$
    $$0\cos x=\dfrac{1}{2}$$
    $$x=\dfrac{\pi}{3}$$


  • Question 5
    1 / -0
    If $$\cos 3x=-1$$, where $$0^{o} \ge x \ge 360^{o}$$, then $$x$$
    Solution
    Given $$\cos 3 x=-1$$
    $$\implies 3 x=2 n \pi\pm \pi=(2 n \pm 1)\pi$$ where $$n$$ is an integer
    $$\implies x=\dfrac{(2 n\pm 1)\pi}{3}$$
    $$\implies x=(2 n\pm 1)60^{\circ}=\pm 60^{\circ},\pm 180^{\circ},\pm 300^{\circ},\pm 420^{\circ},\cdots$$
    As $$0^{\circ}\le x\le 360^{\circ},x=60^{\circ},180^{\circ},300^{\circ} $$
  • Question 6
    1 / -0
    Solution set of the equation $$\sin ^{ 2 }{ x } +\cos ^{ 2 }{ 3x }$$ =1$$ is given by 
    Solution
    According to question,

    $$\sin^2x+\cos^23x=1$$


    $$\implies cos^23x= 1-\sin^2x$$
     $$\implies \cos^23x=\cos^2x$$

    Solving through trigonometric eq,

    $$3x=2n\pi+x$$
     $$\implies 2x=2n\pi$$

    =>  $$x=n\pi$$   ,  $$n\epsilon I$$
  • Question 7
    1 / -0
    If $$\theta$$ is an acute angle such that $$\sec^2 \theta = 3$$. then the value of $$\dfrac{\tan^2 \theta - \text{cosec}^2 \theta}{\tan^2 \theta - \text{cosec}^2 \theta}$$ is 
    Solution
    Given $$\text{sec}^2 \theta=3$$
    for any value of $$\theta$$,$$\dfrac{\tan^2 \theta-\text{cosec}^2 \theta}{\tan^2 \theta-\text{cosec}^2 \theta}=1$$     $$(\because \text{the numerator and denominator is same})$$
  • Question 8
    1 / -0
    For $$x\ \in\ (0,\pi)$$, the equation $$\sin x+2\sin 2x-\sin 3x=3$$ has
    Solution
    $$\sin x+2\sin 2x-\sin 3x=3$$
    $$\sin x+4\sin x\cos x=3+\sin 3x$$
    $$\sin x (1+4\cos x)=3+\sin 3x$$
    $$\sin x(1+4\cos x)=3+\sin x(3-4\sin^2 x)$$
    $$\sin x(4\cos^2x-4\cos x-2)=-2$$
    $$4\cos^2x-4\cos x-2=9$$
    $$(2\cos x-1)^2-3 \ge -3$$
    and on $$(0, \pi)$$ we have $$0 < \sin x \le 1$$ they
    The $$LHS$$ of your last equation. should be $$\ge -3$$ on $$(0,\ \pi)$$
    No Solution in $$(0,\ \pi)$$

  • Question 9
    1 / -0
    The number of value of $$x\in (0,2\pi)$$ satisfying $$\log_{\tan x}(2+4\cos^2x)=2$$
    Solution

  • Question 10
    1 / -0
    The sum $$s=sin\theta+sin2\theta+.......+sin n \theta$$, equals
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now