Self Studies

Trigonometric Functions Test 19

Result Self Studies

Trigonometric Functions Test 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$(1+\tan{A}).(1+\tan{B})=2$$, then $$A+B$$ is 
    Solution
    $$(1+\tan A)(1+\tan B)=2$$
    $$\therefore \tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$$ ........... $$(1)$$
    Now $$1+\tan A+\tan B+\tan A\tan B=2$$
    $$\therefore \tan A+\tan B=1-\tan A\tan B$$
    $$\therefore\dfrac{\tan A+\tan B}{1-\tan A\tan B}=1$$ ........ $$(2)$$
    $$\therefore$$ From $$(1)$$ & $$(2)$$
    $$\tan (A+B)=1$$
    $$\therefore A+B=\dfrac{\pi}{4}$$

  • Question 2
    1 / -0
    If $$3\sin { 2\theta  } =2\sin { 3\theta  }$$ and $$0<\theta <\pi$$, then value of  $$\sin { \theta  }$$ is 
    Solution
    $$3 \sin 2 \theta = 2 \sin 3 \theta$$
    $$\rightarrow 3 \times 2 \sin \cos \theta = 2(3 \sin \theta - 4 \sin{3} \theta )$$
    $$\rightarrow 6 \sin \theta \cos \theta = 6 \sin \theta - 8 \sin{3} \theta$$
    $$\rightarrow \sin \theta (6 \cos \theta - 6+8 \sin^{2} \theta )=0$$
    $$\therefore \sin \theta =0$$ or $$3 \cos \theta+ 4 \sin{2} \theta =3$$
    $$\therefore \sin \theta =0$$ or $$ 3 \cos \theta + 4 (1- \cos{2} \theta)=3$$
    $$\therefore \sin \theta =0$$ or $$3 \cos \theta -4 \cos{2} \theta +1 =0$$
    $$\therefore 4 \cos^{2}  \theta- 3 \cos \theta -1 =0$$
    $$\therefore 4 \cos^{2} \theta - 4 \cos \theta + \cos \theta -1 =0$$ 
    $$\therefore 4 \cos \theta (\cos \theta -1) +1 (\cos \theta -1)=0$$
    $$\therefore (4 \cos \theta +1) (\cos \theta -1)=0$$
    $$\therefore \cos \theta = \dfrac{-1}{4}$$ or $$ \cos \theta =1$$
    $$\therefore \sin \theta = \sqrt{1-\left( \dfrac{-1}{4} \right)^{2}}$$
    $$\therefore \sin \theta =\sqrt{1- \dfrac{1}{16}}$$
    $$\therefore \sin \theta = \dfrac{\sqrt{15}}{4}$$
  • Question 3
    1 / -0
    State whether the following statement is true or false:
    $$cosec{20^ \circ }\sec {20^ \circ } = $$
    Solution
    $$csc 20 \sec 20$$

    $$\implies \dfrac 1{\sin 20\cos 20}$$

    $$\implies \dfrac 2{2\sin 20\cos 20}$$

    $$\implies \dfrac 2{\sin 2(20)}$$

    $$\implies \dfrac 2{\sin 40}$$

    $$\implies 2{\csc 40}$$
  • Question 4
    1 / -0
    $${ cos }^{ 2 }2x+2{ cos }^{ 2 }x=1,x\epsilon \left( -\pi ,\pi  \right)$$, then $$x$$ can take the values
    Solution
    Given $$x\in (-\pi,\pi)\implies 2 x\in (-2\pi,2\pi)$$
    $$\cos^2 2 x+2\cos^2 x=1$$
    $$\implies \cos^2 2 x+2\cos^2 x-1=0$$
    $$\implies \cos^2 2 x+(2\cos^2 x-1)=0$$
    $$\implies \cos^2 2 x+\cos 2 x=0$$
    $$\implies \cos 2 x(\cos 2 x+1)=0$$
    So $$\cos 2 x=0$$ or $$-1$$
    $$\implies 2 x=\pm \dfrac{\pi}{2},\pm \dfrac{3\pi}{2}$$ or $$\pm \pi$$
    $$\implies x=\pm \dfrac{\pi}{4},\pm \dfrac{3\pi}{4}$$ or $$\pm\dfrac{\pi}{2}$$
  • Question 5
    1 / -0
    The number of solutions to the equation $$sin\ 5x+\ sin\ 3x\ +\ sin\ x=0$$ for $$\ 0\leq x\leq \pi$$ is
    Solution
    $$ sin x+sin3x+sin5x = 0 x\in [0,\pi ]$$

    $$ (sinx+sin5x)+sin3x = 0$$

    $$ 2sin 3x cos2x + sin3x = 0$$ $$\displaystyle  [\because sinx+siny = 2\left | sin \dfrac{x+y}{2} \right | \left | cos\dfrac{x-y}{2} \right |]$$

    $$ sin 3x (2cos2x+1) = 0$$

    $$ \Rightarrow sin 3x = 0 , 2cos2x +1 = 0$$

    $$ 3x = n\pi$$ $$\quad|$$ , $$cos 2x = \frac{-1}{2}$$

    $$ x = \dfrac{n\pi }{3}$$$$\quad|$$ $$ 2x =2n\pi  \pm \dfrac{2\pi }{3} [\because cos2\dfrac{2\pi }{3} = \dfrac{-1}{2}]$$

    $$ \quad  \quad \quad \quad \, |  x = n\pi \pm \dfrac{\pi }{3}$$

    For $$ x\in [ 0,\pi ], x = 0, \dfrac{\pi }{3}, \dfrac{2\pi }{3}, \pi $$ [ 4 solutions]

    $$ \therefore $$ None of these  is correct option

  • Question 6
    1 / -0
    If $$\cos^{2}x=\sin x$$, then the value of $$\cos^{2}x(1+\cos^{2}x)$$ is equal to
    Solution
    Given $$\cos^2 x=\sin x$$
    Squaring on both sides
    $$\implies (\cos^2 x)^2=\sin^2 x$$
    $$\implies \cos^4 x=1-\cos^2 x$$
    $$\implies \cos^4 x+\cos^2 x=1$$
    $$\implies \cos^2 x(1+\cos^2 x)=1$$
  • Question 7
    1 / -0
    If $$\cos2x\ +\ 2\cos\ x\ =\ 1$$, then $$\sin^{2}x(2-\cos^{2}x)$$ is
    Solution
    Solution:- (A) $$1$$
    $$\cos{2x} + 2 \cos{x} = 1$$
    $$2 \cos^{2}{x} - 1 + 2 \cos{x} = 1 \; \left( \because \cos{2x} = 2 \cos^{2}{x} - 1 \right)$$
    $$\Rightarrow 2 \cos^{2}{x} + 2 \cos{x} - 2 = 0$$
    $$\Rightarrow \cos^{2}{x} + \cos{x} = 1 ..... \left( 1 \right)$$
    $$\Rightarrow 1 - \cos^{2}{x} = \cos{x}$$
    $$\Rightarrow \sin^{2}{x} = \cos{x} ..... \left( 2 \right)$$
    Now,
    $$\sin^{2} \left( 2 - \cos^{2}{x} \right)$$
    $$= \sin^{2}{x} \left( 1 + \sin^{2}{x} \right)$$
    $$= \cos{x} \left( 1 + \cos{x} \right) \; \left[ \text{From} \left( 2 \right) \right]$$
    $$= \cos{x} + \cos^{2}{x}$$
    $$= 1 \; \left[ \text{From} \left( 1 \right) \right]$$
    Hence $$\sin^{2} \left( 2 - \cos^{2}{x} \right) = 1$$.
  • Question 8
    1 / -0
    $$\dfrac{{\sec 8{\text{A}} - 1}}{{\sec 4{\text{A}} - 1}} = $$
    Solution
    Solution :-
    $$\displaystyle \frac{sec8A-1}{sec4A-1} = \frac{1/cos8A-1}{1/cos4A-1} $$
    $$\displaystyle \Rightarrow \frac{\frac{1-cos8A}{cos8A}}{\frac{1-cos4A}{cos4A}} = \frac{cos4A(1-cos8A)}{cos8A(1-cos4A)} $$
    $$\displaystyle \Rightarrow \frac{cos4A(1-(1-2sin^{2}4A))}{cos8A(1-(1-2sin^{2}2A))} = \frac{cos4A.sin^{2}2A}{cos8A.sin^{2}2A} $$
    $$\displaystyle \Rightarrow \frac{(2cos4Asin4A)sin4A}{(2cos8A\,sin^{2}2A)} = \frac{sin8Asin4A}{2cos8A.sin^{2}2A} $$
    $$\displaystyle \Rightarrow tan8A(\frac{sin4A}{2sin^{2}A}) = tan8A.(\frac{2sin2A.cos2A}{2sin^{2}2A}) $$
    $$\displaystyle \Rightarrow \frac{tan8A}{tan2A} $$ 

  • Question 9
    1 / -0
    If $$\tan \theta + \, \cot \theta = 4$$, then the value of $$\tan^3 \theta + \cot^3 \theta$$ is 
    Solution
    $$\tan\theta +\cot\theta =4$$ 
    $$(\tan\theta +\cot\theta )^{3}=4^{3}$$ 
    $$\tan^{3}\theta +\cot^{3}\theta +(\tan\theta +\cot\theta )3\tan\theta \cot\theta  =64 $$
    $$\tan^{3}\theta +\cot^{3}\theta +(4)3=64 $$
    $$\tan^{3}\theta +\cot^{3}\theta =64-12 $$
    $$\tan^{3}\theta +\cot^{3}\theta =52$$
  • Question 10
    1 / -0
    The positive integer value of $$n>3$$ satisfing the equation
     $$\frac{1}{{\sin \left( {\frac{\pi }{n}} \right)}} = \frac{1}{{\sin \left( {\frac{{2\pi }}{n}} \right)}} + \frac{1}{{\sin \left( {\frac{{3\pi }}{n}} \right)}}$$
     is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now