Self Studies

Trigonometric Functions Test -2

Result Self Studies

Trigonometric Functions Test -2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$(\text{cosec} \theta - \sin \theta)(\sec \theta - \cos \theta)(\tan \theta + \cot \theta)$$ simplifies to
    Solution
    $$(\text{cosec } \theta - \sin \theta)(\sec \theta - \cos \theta)(\tan \theta + \cot \theta)$$

    $$=\left ( \dfrac {1}{\sin \theta}-\sin \theta \right )\left ( \dfrac {1}{\cos \theta}-\cos\theta \right )\left ( \dfrac {\sin \theta}{\cos \theta}+\dfrac{\cos \theta}{\sin \theta} \right )$$

    $$=\dfrac{1-\sin^{2}\theta}{\sin \theta}\times\dfrac{1-\cos^{2} \theta}{\cos \theta}\times\dfrac{\sin^{2} \theta+\cos^{2} \theta}{\sin \theta \cos \theta}$$

    $$=\dfrac{\cos^{2}\theta}{\sin \theta}\times\dfrac{\sin^{2} \theta}{\cos \theta}\times\dfrac{1}{\sin \theta \cos \theta}$$

    $$=1$$
  • Question 2
    1 / -0
    The value of $$ \cos^4\theta-\sin^4 \theta+2 \sin^2 \theta$$ is equal to 
    Solution
    $$\cos^4\theta-\sin^4\theta+2\sin^2\theta$$
    $$=(\cos^2\theta)^2-\sin^4\theta +2\sin^2\theta$$
    $$=(1 - \sin^2\theta)^2 - \sin^4\theta +2\sin^2\theta$$
    $$=1 - 2\sin^2\theta + \sin^4\theta-\sin^4\theta +2\sin^2\theta$$
    $$=1$$
    Hence answer is D
  • Question 3
    1 / -0
    Which of the following is/are FALSE   $$\forall \theta \in R$$?
    Solution
    Dividing LHS by RHS we get,

    in $$A\rightarrow \dfrac{sin\theta}{1-cos\theta}\neq 1$$

    in $$B\rightarrow sec^2\theta-tan^2\theta=1$$

    in $$C\rightarrow cosec^2\theta -cot^2\theta=1$$

    in $$D\rightarrow \dfrac{\dfrac{\sqrt3}{2}}{\dfrac{\sqrt3}{2}}=1$$

    Therefore, Answer is $$sin\theta=1-cos\theta$$
  • Question 4
    1 / -0
    If $$\tan\theta=\dfrac{3}{4}$$ and $$0< \theta, < 90^0,$$ then the value of $$\sin\theta \cos \theta$$ is
    Solution
    Given, $$\tan \theta=\dfrac{3}{4}$$

    $$\therefore \sec \theta=\sqrt{1+\tan^2\theta}$$

    $$=\sqrt{1+\dfrac{9}{16}}=\sqrt{\dfrac{25}{16}}=\dfrac{5}{4}$$

    or 
    $$\cos \theta=\dfrac{4}{5}$$

    $$\therefore \sin \theta \cos \theta = \tan \theta \cos^2 \theta$$

    $$=\dfrac{3}{4}\times \dfrac{16}{25}=\dfrac{12}{25}$$
  • Question 5
    1 / -0
    $$\dfrac{3-4 \sin^2 \theta}{\cos^2 \theta}$$ is equal to
    Solution
    The given expression is 
    $$  \dfrac { 3-4\sin ^{ 2 }{ \theta  }  }{ \cos ^{ 2 }{ \theta  }  } \\ =\dfrac { 3\times 1-4\sin ^{ 2 }{ \theta  }  }{ \cos ^{ 2 }{ \theta  }  } \\ =\dfrac { 3\times (\sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } )-4\sin ^{ 2 }{ \theta  }  }{ \cos ^{ 2 }{ \theta  }  } \\ =\dfrac { 3\cos ^{ 2 }{ \theta  } -\sin ^{ 2 }{ \theta  }  }{ \cos ^{ 2 }{ \theta  }  } \\ =3-\dfrac { \sin ^{ 2 }{ \theta  }  }{ \cos ^{ 2 }{ \theta  }  } \\ =3-\tan ^{ 2 }{ \theta  } .  $$
  • Question 6
    1 / -0
    $$(1-\sin^2 \theta)(1+\tan^2 \theta)$$ is equal to
    Solution
    $$ \left( 1-{ \sin }^{ 2 }\theta  \right) \left( 1+{ \tan }^{ 2 }\theta  \right) \\ ={ \cos }^{ 2 }\theta\times{ \sec }^{ 2 }\theta \\ ={ \cos }^{ 2 }\theta \times \dfrac { 1 }{ { \cos }^{ 2 }\theta  } \\ =1 $$.
  • Question 7
    1 / -0
    $$\dfrac{\tan^{2}\theta}{(1+\sec \theta)^{2}}$$ is equal to
    Solution
    Given, $$ \dfrac { \tan ^{ 2 }{ \theta  }  }{ { \left( 1+\sec ^{ 2 }{ \theta  }  \right)  }^{ 2 } } =\dfrac { \sec ^{ 2 }{ \theta  } -1 }{ { \left( 1+\sec ^{ 2 }{ \theta  }  \right)  }^{ 2 } } $$

    $$ =\dfrac { \left( \sec { \theta  } +1 \right) \left( \sec { \theta  } -1 \right)  }{ { \left( 1+\sec ^{ 2 }{ \theta  }  \right)  }^{ 2 } } $$

    $$ =\dfrac { \sec { \theta  } -1 }{ \sec { \theta  } +1 } $$

    $$ =\dfrac { \dfrac { 1 }{ \cos\theta  } -1 }{ \dfrac { 1 }{ \cos\theta  } +1 } $$

    $$ =\dfrac { 1-\cos\theta  }{ 1+\cos\theta  }$$
  • Question 8
    1 / -0
    $$\sec^2 \theta +\text{cosec}^2 \theta$$ is equal to
    Solution
    $$\sec ^{ 2 }{ \theta +\text{cosec} ^{ 2 }{ \theta  }  } \\ =\dfrac { 1 }{ \cos ^{ 2 }{ \theta  }  } +\dfrac { 1 }{ \sin ^{ 2 }{ \theta  }  } =\dfrac { \sin ^{ 2 }{ \theta +\cos ^{ 2 }{ \theta  }  }  }{ \sin ^{ 2 }{ \theta .\cos ^{ 2 }{ \theta  }  }  } \\ =\dfrac { 1 }{ \sin ^{ 2 }{ \theta .\cos ^{ 2 }{ \theta  }  }  } =\text{cosec} ^{ 2 }{ \theta .\sec ^{ 2 }{ \theta  }  } $$
  • Question 9
    1 / -0
    The expression $$\sin^6 \theta+\sin^4 \theta \cos^2 \theta - \sin^2 \theta \cos^4 \theta - \cos^6 \theta$$ can be reduced to
    Solution

    $$ { \sin }^{ 6 }\theta +{ \sin }^{ 4 }\theta  { \cos }^{ 2 }\theta -{ \sin }^{ 2 }\theta  { \cos }^{ 4 }\theta -{ \cos }^{ 6 }\theta$$

    $$={ \sin }^{ 4 }\theta ({ \sin }^{ 2 }\theta  +{\cos }^{ 2 }\theta )-{ \cos }^{ 4 }\theta ({ \sin }^{ 2 }\theta+{\cos }^{ 2 }\theta )$$

    $$={ \sin }^{ 4 }\theta -{ \cos }^{ 4 }\theta  \left[ \because  { \sin }^{ 2 }\theta  +{  \cos }^{ 2 }\theta =1 \right]$$

    $$=({ \sin }^{ 2 }\theta  +{  \cos }^{ 2 }\theta ) ({ \sin }^{ 2 }\theta  -{  \cos }^{ 2 }\theta )$$

    $$={ \sin }^{ 2 }\theta  -{  \cos }^{ 2 }\theta$$

    Hence, option $$D$$ is the correct answer.

  • Question 10
    1 / -0
    $$\dfrac{\cos A}{1-\tan A} + \dfrac{\sin A}{1 - \cot A}$$is equal to
    Solution

    Simplifying the above equation we get

    $$\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-cotA}$$

    $$=\dfrac{\cos A}{1-\dfrac{\sin A}{\cos A}}+\dfrac{\sin A}{1-\dfrac{\cos A}{\sin A}}$$

    $$=\dfrac{\cos ^2A}{\cos A-\sin A}+\dfrac{\sin ^2A}{\sin A-\cos A}$$

    $$=\dfrac{\cos ^2A-\sin ^2A}{\cos A-\sin A}$$

    $$=\dfrac{(\cos A-\sin A)(\cos A+\sin A)}{\cos A-\sin A}$$

    $$=\cos A+\sin A$$

    Hence answer is B

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now