Self Studies

Trigonometric Functions Test 20

Result Self Studies

Trigonometric Functions Test 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$cot\Theta =sin2\Theta (where\Theta \neq n\pi ,n\ is\ an\ integer)\Theta $$=
    Solution
    $$\cot\theta =\sin 2\theta$$
    $$\Rightarrow \dfrac{\cos\theta}{\sin\theta}=2\sin\theta \cos\theta$$
    $$\Rightarrow \cos\theta =2\sin^2\theta \cos\theta$$
    $$\Rightarrow \cos\theta -2\sin^2\theta \cos\theta =0$$
    $$\Rightarrow \cos\theta(1-2\sin^2\theta)=0$$
    $$\Rightarrow \cos\theta(\cos 2\theta)=0$$
    $$\Rightarrow \cos\theta =0$$ or $$\cos 2\theta =0$$
    $$\Rightarrow \theta =\dfrac{\pi}{2}$$ or $$2\theta =\dfrac{\pi}{2}$$
    $$\Rightarrow \theta =\dfrac{\pi}{4}$$
    $$\therefore \theta$$ can be $$45^o$$ or $$90^o$$.

  • Question 2
    1 / -0
    In a triangle ABC,
     $$b\,cos\,(C+\theta)+c\,cos(B-\theta)=$$
    Solution
    In $$\triangle ABC,A+B+C=\pi$$ and $$a=2 R\sin A,b=2 R\sin B,c=2 R \sin C$$
    $$b\cos (C+\theta)+c\cos (B-\theta)=R(2\sin B\cos (C+\theta)+2\sin C\cos (B-\theta))$$
                                                       $$=R(\sin (B+C+\theta)+\sin (B-C-\theta)+\sin (B+C-\theta)+\sin (C-B+\theta))$$
                                                       $$=R(\sin (\pi-(A-\theta))+\sin (\pi-(A+\theta))+\sin (B-C-\theta)-\sin (B-C-\theta))$$
                                                       $$=R(\sin (A-\theta)+\sin (A+\theta))$$
                                                       $$=R(2\sin A\cos \theta)$$
                                                       $$=(2 R\sin A)\cos \theta$$
                                                       $$=a\cos \theta$$
  • Question 3
    1 / -0
    If $$\cos\ \theta+\sin\ \theta=a$$, then $$\sin\ 2\theta=$$
    Solution
    $$\cos{\theta}+\sin{\theta}=a$$
    Squaring both sides, we get
    $${\cos}^{2}{\theta}+{\sin}^{2}{\theta}+2\cos{\theta}\sin{\theta}={a}^{2}$$
    $$\Rightarrow\,1+2\cos{\theta}\sin{\theta}={a}^{2}$$ since $${\cos}^{2}{\theta}+{\sin}^{2}{\theta}=1$$
    $$\Rightarrow\,\sin{2\theta}={a}^{2}-1$$ 
  • Question 4
    1 / -0
    If $$\sin^{2} x- \cos x=1/4$$, then the value of $$x$$ between $$0$$ and $$2\pi$$ are :
    Solution
    Given 

    $$\sin ^2x-\cos x=\dfrac 14$$

    $$\implies 1-\cos ^2x-\cos x=\dfrac 14$$

    $$\implies 4-4\cos ^2x-4\cos x=1$$

    $$\implies 4\cos ^2x+4\cos x-3=0$$

    $$\implies 4\cos ^2x+6\cos x-2\cos x-3=0$$

    $$\implies 2\cos x(2\cos x+3)-1(2\cos x+3)=0$$

    $$\implies (2\cos x-1)(2\cos x+3)=0$$

    $$\implies \cos x=\dfrac 12$$ and $$ \cos x\neq -\dfrac 32$$

    $$\implies x=\dfrac \pi 3,\dfrac {5\pi}3$$
  • Question 5
    1 / -0
    $$\dfrac{1+cot\alpha+cosec\alpha}{1-cot\alpha+cosec \alpha}=$$
    Solution

  • Question 6
    1 / -0
    If $$\sin ^ { - 1 } x = y ,$$ then
    Solution
    $$\begin{array}{l} { \sin ^{ -1 }  }x=y \\ or\, \, y={ \sin ^{ -1 }  }x \end{array}$$
    we know that
    Range of principle Value of $$\sin $$ is 
    $$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$$
    So, $$ - \frac{\pi }{2} \le y \le \frac{\pi }{2}$$
  • Question 7
    1 / -0
    The equation $$\sin x + \sin y + \sin z = -3$$ for $$0 \le x \le 2\pi, 0 \le y \le 2\pi, 0 \le z \le 2\pi$$, has
    Solution
    $$sinx+siny+sinz=-3$$
    only possible then $$x=y=z={ sin }^{ -1 }\left( -1 \right) $$
    So, $$x=y=z=3\Pi /2$$
    for $$0\le x,y,x\le 2\pi $$
    So, Only one solution is possible.
  • Question 8
    1 / -0
    Number of solutions of the equation $$4\sin^{2}x+\tan^{2}x+\cot^{2}x+\csc^{2}=6$$ in $$[0, \pi]$$ is 
    Solution

  • Question 9
    1 / -0
    Number of solution of $$\tan ( 2 x ) = \tan ( 6 x ) \operatorname { in } ( 0,3 \pi )$$ is 
    Solution

  • Question 10
    1 / -0
    Solution of $$7 \sin ^ { 2 } x + 3 \cos ^ { 2 } x = 4$$ is
    Solution
    $$\\7sin^2x+3cos^2x=4\\4sin^2x+3sin^2x+3cos^2x=4\\4sin^2x+3=4\\4sin^2x=1\\sin^2x=(\frac{1}{4})\\sinx=\pm (\frac{1}{2})\\\therefore\>x=n\pi\pm (\frac{\pi}{6})$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now