Self Studies

Trigonometric Functions Test 21

Result Self Studies

Trigonometric Functions Test 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Genral solution of the equation $$\theta -cosec\theta =\dfrac { 4 }{ 3 }$$ is :
    Solution

  • Question 2
    1 / -0
    If $$\sin \alpha = a \sin \beta$$ and $$\cos \alpha = b \cos \beta$$ then $$\tan \alpha =$$
    Solution

  • Question 3
    1 / -0
    If $$\tan \theta +\sec \theta =\sqrt {3}, 0< \theta < \pi$$ then $$\theta $$ is equal to
  • Question 4
    1 / -0
    If $$\cosh x=\sec \theta$$, then $$\coth^{2}(x/2)=$$
    Solution
    Let $$t=\tanh^2 (x/2)$$

    Given $$\cosh x=\text{sec}\theta$$

    $$\implies \dfrac{1-\tanh^2 x}{1+\tanh^2 x}=\dfrac{1}{\cos \theta}$$

    $$\implies \dfrac{1-t^2}{1+t^2}=\dfrac{1}{\cos \theta}$$

    $$\implies (1-t^2)\cos \theta=1+t^2$$

    $$\implies t^2(1+\cos \theta)=1-\cos \theta$$

    $$\implies t^2=\dfrac{1-\cos \theta}{1+\cos \theta}=\dfrac{2\sin^2 \theta/2}{2\cos^2 \theta/2}=\tan^2 \theta/2$$

    $$\coth^2(x/2)=\dfrac{1}{t^2}=\cot^2 \dfrac{\theta}{2}$$
  • Question 5
    1 / -0
    Choose the correct answer the following:
    2) The principle solution of $$\sec{x}+2=0$$ is____
  • Question 6
    1 / -0
    $$\tan\left(\dfrac{\pi}{4}+x\right)+\tan\left(\dfrac{\pi}{4}-x\right)=2$$, then $$x=$$
    Solution
    Given $$\tan \bigg(\dfrac{\pi}{4}+x\bigg)+\tan \bigg(\dfrac{\pi}{4}-x\bigg)=2$$

    $$\implies \dfrac{\tan \dfrac{\pi}{4}+\tan x}{1-\tan \dfrac{\pi}{4}\tan x}+\dfrac{\tan \dfrac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4}\tan x}=2$$

    $$\implies \dfrac{1+\tan x}{1-\tan x}+\dfrac{1-\tan x}{1+\tan x}=2$$

    $$\implies \dfrac{(1+\tan x)^2+(1-\tan x)^2}{(1-\tan x)(1+\tan x)}=2$$

    $$\implies \dfrac{2(1+\tan^2 x)}{1-\tan^2 x}=2$$               $$(\because (a+b)^2+(a-b)^2=2(a^2+b^2)$$  and $$(a+b)(a-b)=a^2-b^2)$$

    $$\implies \dfrac{1+\tan^2 x}{1-\tan^2 x}=1$$

    $$\implies 1-\tan^2 x=1+\tan^2 x$$

    $$\implies \tan^2 x=0=\tan^2 0$$

    $$\implies x=n\pi$$
  • Question 7
    1 / -0
    One of principal solution of $$\sqrt 3 \sec x =  - 2$$ is equal to
    Solution

  • Question 8
    1 / -0
    If $$\alpha +\beta =\dfrac { 5\pi  }{ 4 } $$, then value of $$\dfrac { \cot { \alpha  } \cdot\cot { \beta  }  }{ \left( 1+\cot { \alpha  }  \right) \left( 1+\cot { \beta  }  \right)  }$$ is (wherever defined)-
    Solution
    Given $$\alpha+\beta=\dfrac{5\pi}{4}$$
    $$\implies \cot (\alpha+\beta)=\cot \dfrac{5\pi}{4}$$
    $$\implies \dfrac{\cot \alpha\cot \beta-1}{\cot \alpha+\cot \beta}=1$$
    $$\implies \cot \alpha\cot \beta-1=\cot \alpha+\cot \beta$$
    $$\implies \cot \alpha\cot \beta=1+\cot \alpha+\cot \beta$$
    $$\implies 2\cot \alpha\cot \beta=1+\cot \alpha+\cot \beta+\cot \alpha\cot \beta$$
    $$\implies 2\cot \alpha\cot \beta=(1+\cot \alpha)(1+\cot \beta)$$
    $$\implies \dfrac{\cot \alpha\cot \beta}{(1+\cot \alpha)(1+\cot \beta)}=\dfrac{1}{2}$$
  • Question 9
    1 / -0
    $$cos[tan^{-1}(sin(cot^{-1}x))]$$ is equal to-
    Solution
    Let $$\text{cot}^{-1} x=y\implies x=\cot y\implies \sin y=\dfrac{1}{\sqrt{1+x^2}}$$
    Let $$\text{tan}^{-1} \dfrac{1}{\sqrt{x^2+1}}=z\implies \tan z=\dfrac{1}{\sqrt{1+x^2}} $$
    So $$\cos z=\dfrac{1}{\sqrt{1+(\frac{1}{\sqrt{x^2+1}})^2}}=\dfrac{1}{\sqrt{1+\frac{1}{x^2+1}}}=\dfrac{1}{\sqrt{\frac{x^2+2}{x^2+1}}}=\sqrt{\dfrac{x^2+1}{x^2+2}}$$
    So $$\cos [\text{tan}^{-1}\{\sin (\text{cot}^{-1} x)\}]=\cos [\text{tan}^{-1}\{\sin y\}]=\cos [\text{tan}^{-1}\frac{1}{\sqrt{1+x^2}}]=\cos z=\sqrt{\dfrac{x^2+2}{x^2+1}}$$
  • Question 10
    1 / -0
    If $$sin A=\dfrac{3}{5},\tan B=\dfrac{1}{2}$$ and $$\dfrac{\pi}{2}<A<\pi<B<\dfrac{3\pi}{2}$$, then the value of $$8\tan A-\sqrt{5}sec B=$$
    Solution
    Given $$\dfrac{\pi}{2}<A<\pi,\implies \tan A<0$$
    $$\sin A=\dfrac{3}{5}\implies \tan A=-\dfrac{3}{\sqrt{5^2-3^2}}=-\dfrac{3}{4}$$
    $$\pi<B<\dfrac{3\pi}{2}\implies \text{sec} B<0$$
    $$\tan B=\dfrac{1}{2}\implies \text{sec} B=-\sqrt{1+\dfrac{1}{4}}=-\dfrac{\sqrt{5}}{2}$$
    So $$8\tan A-\sqrt{5}\text{sec}B=8\times \bigg(-\dfrac{3}{4}\bigg)-\sqrt{5}\times \bigg(-\dfrac{\sqrt{5}}{2}\bigg)=-6+\dfrac{5}{2}=-\dfrac{7}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now