Self Studies

Trigonometric Functions Test 22

Result Self Studies

Trigonometric Functions Test 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    if $$\sqrt{2} cos \theta$$ = $$\sqrt { \dfrac { 2+\sqrt { 2+\sqrt { 2 }  }  }{ 2 }  }$$ then the value of $$\theta$$ is 
    Solution
    Given $$\sqrt{2}\cos \theta=\sqrt{\dfrac{2+\sqrt{2+\sqrt{2}}}{2}}$$

    Squaring on both sides

    $$2\cos ^2 \theta=1+\dfrac{\sqrt{2+\sqrt{2}}}{2}$$

    $$\implies (2\cos^2 \theta-1)=\dfrac{\sqrt{2+\sqrt{2}}}{2}$$

    $$\implies \cos 2\theta=\dfrac{\sqrt{2+\sqrt{2}}}{2}$$

    Squaring on both sides

    $$\implies \cos^2 2\theta=\dfrac{2+\sqrt{2}}{4}$$

    $$\implies 2\cos^2 2\theta=1+\dfrac{1}{\sqrt{2}}$$

    $$\implies \cos 4\theta=\dfrac{1}{\sqrt{2}}$$

    $$\implies 4\theta=\dfrac{\pi}{4}$$

    $$\implies \theta=\dfrac{\pi}{16}$$
  • Question 2
    1 / -0
    If $$tan\theta +sin\theta =m$$ and $$tan\theta -sin\theta =n$$ then $$m^2-n^2=$$
    Solution
    $$m^2-n^2$$
    $$=(\tan \theta +\sin \theta)^2-(\tan \theta-\sin \theta)^2$$
    $$=(\tan^2 \theta +\sin^2 \theta +2\tan \theta \sin \theta)-(\tan^2\theta +\sin^2 \theta -2\tan \theta \sin \theta)$$
    $$=4\tan \theta \sin \theta$$

    Now, $$4\sqrt{mn}=4\sqrt{\tan^2 \theta-\sin^2 \theta}$$
    $$=4\sqrt{\dfrac{\sin^2 \theta}{\cos^2 \theta}-\sin^2 \theta}$$

    $$=4\sin \theta \sqrt{\dfrac{1-\cos^2 \theta}{\cos ^2 \theta}}$$

    $$=4\sin \theta \sqrt{\tan^2 \theta}=4\sin \theta \tan \theta$$

    Thus, $$m^2-n^2=4\sqrt{mn}$$
  • Question 3
    1 / -0
    The most general solution of $$\tan\theta =-1, \cos\theta =\dfrac { 1 }{ \sqrt { 2 }  } $$ is -
    Solution

  • Question 4
    1 / -0
    $$cos (4 \pi + \theta)$$ = ...
    Solution
    As we know that
    $$\cos(2 n\pi+\theta)=\cos \theta$$
    So $$\cos(4\pi+\theta)=\cos \theta$$
  • Question 5
    1 / -0
    Consider the operator a = X + $$\dfrac{d}{dx}$$ acting on smooth function of x. The commutator [a, cos x] is
  • Question 6
    1 / -0
    If $${ P }_{ n }=1+{ cos2 }^{ n-1 }\theta -{ sin2 }^{ n-1 }\theta $$ and $${ Q }_{ n }=1+{ tan2 }^{ n-1 }\theta $$ such that $$\overset { r=n }{ \underset { r=1 }{ \Pi  }  } { P }_{ r }{ Q }_{ r-1 }=1$$ (here $$\Pi $$ denotes product of terms) is true for 
  • Question 7
    1 / -0
    The value of $$\dfrac{\sin^{2}2\theta}{\cos^{2}\theta}+\dfrac{\sin^{2}4\theta}{\cos^{2}2\theta}+\dfrac{\sin^{2}\theta}{\cos^{2}4\theta}$$ is $$\left(where \theta=\dfrac{\pi}{7}\right)$$
  • Question 8
    1 / -0
    If $$4\cos{\theta}-3\sec{\theta}=2\tan{\theta}$$, then $${\theta}$$ is equal to
    Solution
    Given,

    $$4\cos \theta -3\sec \theta =2\tan \theta $$

    $$4\cos \theta -3\times \dfrac{1}{\cos \theta} =2\times \dfrac{\sin \theta}{\cos \theta} $$

    multiply by $$\cos \theta $$

    $$4\cos ^2\theta -3=2\sin \theta $$...........$$(i)$$

    $$\because \left (\cos ^2\theta =1-\sin ^2\theta\right ) $$

    $$4-4\sin ^2\theta -3-2\sin \theta =0$$............$$from (i)$$

    $$4\sin ^2\theta +2\sin \theta -1=0$$

    $$\therefore \sin \theta =\dfrac{-1\pm \sqrt{5}}{4}$$

    $$\Rightarrow \theta =n\pi +(-1)^n\dfrac{\pi}{10}$$
  • Question 9
    1 / -0
    If $$cosx + cos y - cos(x+y) =$$ $$\dfrac{3}{2}$$, then
    Solution

  • Question 10
    1 / -0
    In $$\Delta ABC, \dfrac{1}{2} a^2 \dfrac{sin B \, sin C}{sin A} = $$
    Solution
    In $$\triangle ABC$$
    $$\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\implies \dfrac{\sin B}{\sin A}=\dfrac{b}{a}$$

    $$\therefore \dfrac{1}{2}a^2\dfrac{\sin B\sin C}{\sin A}=\dfrac{1}{2} a^2\times \dfrac{\sin B}{\sin A}\times \sin C=\dfrac{1}{2}a^2\times \dfrac{b}{a}\times \sin C=\dfrac{1}{2} a b\sin C=\Delta$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now