Self Studies

Trigonometric Functions Test 23

Result Self Studies

Trigonometric Functions Test 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The general solution of the trigonometric equation $$\tan^2 \theta = 1$$ is ______
    Solution

    $$\tan ^{2} \theta=1=\tan ^{2}\left(\frac{\pi}{4}\right) \\$$
    $$\tan ^{2} \theta=\tan ^{2} \alpha \Rightarrow \theta=n \pi \pm \alpha \\$$
    $$\theta=n \pi \pm \frac{\pi}{4}$$
  • Question 2
    1 / -0
    The maximum value of $$\sin x_1 + 2 \sin x_2 + 3\sin x_3$$ is
    Solution

  • Question 3
    1 / -0
    If $$\log_{3} \sin x-\log_{3} \cos x-\log_{3} (1-\tan x)-\log_{3} (1+\tan x)=-1$$, the $$\tan 2x$$ is equal to 
    Solution

  • Question 4
    1 / -0
    If $$\sin^{4} \alpha +\cos^{4} \beta +2=4 \sin \alpha . \cos \beta, 0 \le \alpha , \beta \le \dfrac{\pi}{2}$$, then $$(\sin \alpha +\cos \beta)$$ is equal to 
    Solution

  • Question 5
    1 / -0
    If $$cos \theta=\dfrac{1}{2}\left(a+\dfrac{1}{a}\right)$$ then $$cos3\theta$$ in terms of $$'a'$$=
    Solution
    Given 

    $$\cos \theta =\dfrac 12\left(a+\dfrac 1a\right)$$

    $$\cos 3\theta =4\cos ^3\theta -3\cos \theta $$

    $$\implies 4 \left[\dfrac 12\left(a+\dfrac 1a\right)\right]^3-3\left[\dfrac 12\left(a+\dfrac 1a\right)\right]$$

    $$\implies \dfrac 48 \left(a+\dfrac 1a\right)^3-\dfrac 32 \left(a+\dfrac 1a\right)$$

    $$\implies \dfrac 12 \left( a^3+\dfrac 1{a^3} +3a^2\dfrac 1a+3a\dfrac 1{a^2}\right)-\dfrac 32 \left(a+\dfrac 1a\right)$$

                                           $$\bigg( (a+b)^3=a^3+b^3+3a^2b+3ab^2\bigg)$$

    $$\implies \dfrac 12\left( a^3+\dfrac 1{a^3} + 3a + \dfrac 3a \right) -\dfrac 32\left(a-\dfrac 1a \right)$$

    $$\implies \dfrac 12\left( a^3+\dfrac 1{a^3} +3\left(a+\dfrac 1a\right) -3\left(a-\dfrac 1a \right)\right)$$

    $$\implies \cos3\theta =\dfrac 12 \left( a^3+\dfrac 1{a^3}\right)$$

  • Question 6
    1 / -0
    In $$ \Delta ABC, \, \sum \dfrac{a^2 sin (B - C)}{sin A} = $$
    Solution
    In $$\triangle ABC,a=2 R\sin A=2 R\sin (180^{\circ}-(B+C))=2 R\sin (B+C),\dfrac{a}{\sin A}=2 R$$
    $$\displaystyle\sum \dfrac{a^2\sin (B-C)}{\sin A}=\displaystyle\sum\dfrac{a}{\sin A}\times a \times \sin(B-C)=\sum \dfrac{a}{\sin A}(2 R\sin (B+C)\sin (B-C))$$
                                    $$=4 R^2\sum (\sin ^2 B-\sin^2 C)$$   $$(\because \sin(A+B)\sin (A-B)=\sin^2 A-\sin^2 B)$$
                                    $$=4 R^2(\sin^2 B-\sin^2 C+\sin^2 C-\sin^2 A+\sin^2 A-\sin^2 B)$$
                                    $$=0$$
  • Question 7
    1 / -0
    In $$\Delta ABC, \sum \, a \, sin (B - C) = $$
    Solution
    In $$\triangle ABC,a=2 R\sin A=2 R\sin (180^{\circ}-(B+C))=2 R\sin (B+C)$$
    $$\displaystyle\sum a\sin (B-C)=2 R\sum \sin (B+C)\sin (B-C)$$
                                    $$=2 R\sum (\sin ^2 B-\sin^2 C)$$   $$(\because \sin(A+B)\sin (A-B)=\sin^2 A-\sin^2 B)$$
                                    $$=2 R(\sin^2 B-\sin^2 C+\sin^2 C-\sin^2 A+\sin^2 A-\sin^2 B)$$
                                    $$=0$$
  • Question 8
    1 / -0
    If $$A+B=90,\sin A=a, \sin B=b$$ then $$a^{2}+b^{2}=?$$
    Solution
    Given $$A+B=90\implies B=90-A$$
    And also given that $$a=\sin A,b=\sin B=\sin (90-A)=\cos A$$
    $$a^2+b^2=\sin^2 A+\cos^2 A=1$$
  • Question 9
    1 / -0
    If $$\cos A + \cos B = 4 \sin^2 \left(\dfrac{C}{2}\right)$$ then triangle $$ABC$$, which relation holds good
    Solution

  • Question 10
    1 / -0
    In $$\triangle\ {ABC},\left(\cot\dfrac{A}{2}+\cot\dfrac{B}{2}\right)\left(a\sin^{2}\dfrac{B}{2}+b\sin^{2}\dfrac{A}{2}\right)=$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now