Self Studies

Trigonometric Functions Test 24

Result Self Studies

Trigonometric Functions Test 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In $$\Delta ABC . \sum \dfrac{a^2 sin (B - C)}{sin B + sin C}$$
    Solution
    In $$\triangle ABC,a=2 R\sin A=2 R\sin (180^{\circ}-(B+C))=2 R\sin (B+C)$$
    $$\sum \dfrac{a^2\sin (B-C)}{\sin B+\sin C}=2 R\sum \dfrac{a\sin (B+C)\sin (B-C)}{\sin B+\sin C}$$
                                    $$=2 R\sum \dfrac{a(\sin ^2 B-\sin^2 C)}{\sin B+\sin C}$$   $$(\because \sin(A+B)\sin (A-B)=\sin^2 A-\sin^2 B)$$
                                    $$=4 R^2\sum \sin A(\sin B-\sin C)$$
                                    $$=4 R^2(\sin A(\sin B-\sin C)+\sin B(\sin C-\sin A)+\sin C(\sin A-\sin B)$$
                                    $$=0$$
  • Question 2
    1 / -0
    The value of the expression  $$\dfrac { 1 - 4 \sin 10 ^ { \circ } \sin 70 ^ { \circ } } { 2 \sin 10 ^ { \circ } }$$  is
    Solution
    $$\dfrac {1-4 sin 10^o sin 70^o}{2 son 10^o}=\dfrac {1-4 sin 10^o sin(90-20)}{2 sin 10^o}$$
    $$\dfrac {1-4 sin 10^o cos 20^o}{2 sin 10^o}$$      $$\left \{ since \,\, sin (90-\theta)=cos \theta \right.$$
    $$\dfrac {1-2 (sin 10^o cos 20^o)}{2 sin 10^o}$$ 
    $$\dfrac {1-2 sin 30 +sin(-10^o)}{2 sin 10^o}$$   $$\left \{ since\,\, sin(A+B)+Sin (A-B)= 2 Sin A \, Cos B \right.$$
    $$\dfrac {1-2(1/2 -sin 10^o)}{2 sin 10^o}$$
    $$\dfrac {1-2\times \frac{1}{2} + 2sin 10^o)}{2 sin 10^o}=1$$
  • Question 3
    1 / -0
    If $$3 \sin \theta + 5 \cos \theta = 5$$, then the value of $$5 \sin \theta - 3 \cos \theta$$ is equal to
    Solution
    Let $$5\sin \theta-3\cos \theta=k\cdots(1)$$
    Given $$3\sin \theta+5\cos \theta=5\cdots(2)$$
    $$(1)^2+(2)^2\implies (5\sin \theta-3\cos \theta)^2+(5\cos \theta+3\sin \theta)^2=k^2+5^2$$
    $$\implies 25\sin^2 \theta+9\cos ^2 \theta-30\sin \theta\cos \theta+25\cos^2 \theta+9\sin ^2 \theta+30\sin \theta\cos \theta=k^2+25$$
    $$\implies 25(\sin^2 \theta+\cos^2 \theta )+9(\sin^2 \theta+\cos^2 \theta)=k^2+25$$
    $$\implies k^2=25+9-25=9\implies k=\pm3$$
    So $$5\sin \theta-3\cos \theta=3$$
  • Question 4
    1 / -0
    The general value of satisfying both $$\sin \theta = \dfrac{-1}{2}$$ and $$\tan \theta = \dfrac{1}{\sqrt{3}}$$ is:
    Solution

  • Question 5
    1 / -0
    $$\displaystyle \sum _{ \lambda =1 }^{ 10 }{ \sin ^{  }{ \left( \sin { \left( \lambda \pi -\dfrac { \pi  }{ 6 }  \right)  }  \right)  }  } $$ is equal to
    Solution

  • Question 6
    1 / -0
    The minimum value of $$3 \tan^2 \theta + 12 \cos^2 \theta$$:
    Solution

  • Question 7
    1 / -0
    $${ cos }^{ 2 }\frac { 3\pi  }{ 5 } +{ cos }^{ 2 }\frac { 4\pi  }{ 5 } =$$ ____________ .
    Solution

  • Question 8
    1 / -0
    Number of solutions to the equation $$2 ^ { \sin ^ { 2 } x } + 5.2 ^ { \cos ^ { 2 } x } = 7 ,$$ in the interval $$[ - \pi , \pi ] ,$$ is
    Solution
    $$2^{\sin^2x}+5.2^{\cos^2x}=7$$

    $$2^{\sin^2x}+5.2^{1-\sin^2x}=7$$

    Let $$2^{\sin^2x}=k$$

    $$k+5\cdot\dfrac{2}{k}=7$$

    $$k+\dfrac{10}{k}=7$$

    $$k^2+10=7h$$

    $$k^2-7k+10=0$$

    $$(k-2)(k-5)=0$$

    But $$2^{\sin^2x}\leq 2'=2$$

    Hence $$2^{\sin^2x}\neq 5$$

    $$\sin^2x=1$$

    $$\Rightarrow x=\dfrac{\pi}{2}, \dfrac{-\pi}{2}$$

    Hence there are only two solution in $$[-\pi, \pi]$$ i.e., $$\dfrac{-\pi}{2}$$ and $$\dfrac{\pi}{2}$$.
  • Question 9
    1 / -0
    If $$5\left({\tan}^{2}x-{\cos}^{2}x\right)=2\cos2x+9$$, then the value of $$\cos4x$$ is:
    Solution

  • Question 10
    1 / -0
    $$cos \theta - 4 sin \theta = 1\Rightarrow  sin\theta +4cos\theta $$
    Solution
    Let $$\sin \theta+4\cos \theta=k\cdots(1)$$
    Given $$\cos \theta-4\sin \theta=1\cdots(2)$$
    $$(1)^2+(2)^2\implies (\sin \theta+4\cos \theta)^2+(\cos \theta-4\sin \theta)^2=k^2+1^2$$
    $$\implies \sin^2 \theta+16\cos ^2 \theta+8\sin \theta\cos \theta+\cos^2 \theta+16\sin ^2 \theta-8\sin \theta\cos \theta=k^2+1$$
    $$\implies (\sin^2 \theta+\cos^2 \theta )+16(\sin^2 \theta+\cos^2 \theta)=k^2+1$$
    $$\implies k^2=1+16-1=16\implies k=\pm 4$$
    So $$\sin \theta+4\cos \theta=\pm 4$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now