Self Studies

Trigonometric Functions Test 25

Result Self Studies

Trigonometric Functions Test 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\dfrac{\cos^{2}\theta+\tan^{2}\theta\ -1}{\sin^{2}\theta}$$ is
    Solution
    $$\dfrac{\cos^2 \theta+\tan^2 \theta-1}{\sin^2 \theta}=\dfrac{\cos^2 \theta}{\sin^2 \theta}+\dfrac{\sin^2 \theta}{\sin^2 \theta\cos^2 \theta}-\dfrac{1}{\sin^2 \theta}$$
                                        $$=\cot^2 \theta+\text{sec}^2 \theta-\text{cosec}^{2}\theta$$
                                        $$=\text{sec}^2 \theta-(\text{cosec}^2 \theta-\cot^2 \theta)$$
                                        $$=\text{sec}^2 \theta-1$$
                                        $$=\tan^2 \theta$$
  • Question 2
    1 / -0
    If $${ cosec }\theta -cot\theta =p$$, then $$cosec\theta +cot\theta =$$

    Solution
    $$\csc{\theta}-\cot{\theta}=p$$
    $$\Rightarrow \left(\csc{\theta}-\cot{\theta}\right)\left(\csc{\theta}+\cot{\theta}\right)=p\left(\csc{\theta}+\cot{\theta}\right)$$
    $$\Rightarrow {\csc}^{2}{\theta}-{\cot}^{2}{\theta}=p\left(\csc{\theta}+\cot{\theta}\right)$$
    $$\Rightarrow 1=p\left(\csc{\theta}+\cot{\theta}\right)$$
    $$\therefore \csc{\theta}+\cot{\theta}=\dfrac{1}{p}$$
  • Question 3
    1 / -0
    The value of $$\sin \theta$$ is not equal to
    Solution

  • Question 4
    1 / -0
    The value of $$\sin\theta$$ is not equal to
    Solution

  • Question 5
    1 / -0
    If $$x_{1}$$ and $$x_{2}$$ are two distinct roots of the equation $$a\cos x+b\sin x=c$$, then $$\tan\dfrac {x_{1}+x_{2}}{2}$$ is equal to
    Solution
    $$a \cos x + b \sin x =c$$
    $$\dfrac{1-\tan^2\dfrac{x}{2}}{1+\tan^2\dfrac{x}{2}} +b \dfrac{2\tan \dfrac{x}{2}}{1+\tan^2 \dfrac{x}{2}}=c$$

    $$(c+a) \tan^2 \dfrac{x}{2} -2b \tan \dfrac{x}{2} +(c-a) =0$$

    Since, $$x_1$$ and $$x_2$$ are roots,
    $$\tan \dfrac{x_1}{2}+\tan \dfrac{x_2}{2} =\dfrac{2b}{c+a}$$

    and $$\tan \dfrac{x_1}{2}.\tan \dfrac{x_2}{2} =\dfrac{c-a}{c+a}$$

    Hence,
    $$\tan (\dfrac{x_1+x_2}{2}) = \dfrac{\tan \dfrac{x_1}{2} +\tan \dfrac{x_2}{2}}{1-\tan \dfrac{x_1}{2} \tan \dfrac{x_2}{2}}$$

    $$=\dfrac{\dfrac{2b}{c+a}}{1-\dfrac{c-a}{c+a}}=\dfrac{b}{a}$$

    Hence, option (b) is correct.
  • Question 6
    1 / -0
    The values of x in $$\left(0, \dfrac{\pi}{2}\right)$$ satisfying the equation $$\sin x\cos x=\dfrac{1}{4}$$ are ________.
    Solution
    We know that, $$\displaystyle \text{sin}(2x) = 2\text{ sin }x\text{ cos }x$$.
    So, from $$\displaystyle \text{sin }x \text{ cos }x = \frac{1}{4}$$, we get that $$\text{ sin }(2x) = \frac{1}{2}$$.
    So, we have to find the solutions of the equation $$\displaystyle\text{sin} (2x) = \frac{1}{2}$$, where $$\displaystyle x \in (0, \frac{\pi}{2})$$.

    From this data, we get that $$\displaystyle 2x = \frac{\pi}{6}$$ or $$\dfrac{5\pi}{6}$$.
    That is, $$x = \dfrac{\pi}{12}$$ or $$\dfrac{5\pi}{12}$$.
  • Question 7
    1 / -0
    The angles of a triangle are in $$\displaystyle AP$$ and the ratio of the number of degrees in the least to the number of radius in the greatest is $$\displaystyle 60 : \pi$$. The smallest angle is
    Solution
    Let the angles be $$\displaystyle (a - d)^0 , a^0$$ and $$\displaystyle (a + d)^0 $$. Then,
    $$\displaystyle a - d + a + a + d = 180 \Rightarrow 3a = 180 \Rightarrow a = 60$$.
    So, the angles are $$\displaystyle (60 - d)^0, 60^0$$ and $$\displaystyle(60 + d)^0$$.
    $$\displaystyle 180^0 = \pi^c \Rightarrow (60 + d)^0 =\left \{\frac{\pi}{180} \times (60 + d) \right\}^c = \left\{\frac{(60 + d) \pi}{180}\right\}^c$$
    $$\therefore$$ $$\displaystyle \frac{(60 - d)}{(60 + d) \frac{\pi}{180}} = \frac{60}{\pi}\Rightarrow \frac{3(60 - d)}{(60 + d)} = 1$$
    $$\displaystyle \Rightarrow 180 - 3d = 60 + d \Rightarrow 4d = 120 \Rightarrow d = 30$$.
    $$\therefore$$ the smallest angle = $$\displaystyle (60 - 30)^0 = 30^0 $$. 
  • Question 8
    1 / -0
    $$\sin 15^{\circ} = $$
    Solution
    $${\textbf{Step -1:}}{\textbf{ Place the values according to the formula to find the value}}{\textbf{.}}$$
                     $${\text{sin}}\left( {45 - 30} \right) = \sin 45\cos 30 - \cos 45\sin 30$$    $$\left[ {\left( {{\mathbf{\sin A - B = \sin A\cos B - \cos A\sin B}}} \right)} \right]$$
                     $$\sin 15^\circ  = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}$$
                     $$ = \dfrac{{\sqrt 3  - 1}}{{2\sqrt 2 }}$$
    $${\textbf{Hence, the value of sin 15}}^\circ {\textbf{ is }}{\mathbf{\dfrac{{\sqrt 3  - 1}}{{2\sqrt 2 }}.}}$$
  • Question 9
    1 / -0
    What is $$\cot(\dfrac{A}{2})-\tan(\dfrac{A}{2})$$ equal to ?
    Solution
    $$\cot \left(\dfrac{A}{2}\right)-\tan\left(\dfrac{A}{2}\right)$$

    $$\Rightarrow$$  $$\dfrac{\cos \dfrac{A}{2}}{\sin\dfrac{A}{2}}-\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}}$$

    $$\Rightarrow$$  $$\dfrac{\cos^2\dfrac{A}{2}-\sin^2\dfrac{A}{2}}{\sin\dfrac{A}{2}.\cos\dfrac{A}{2}}$$

    $$\Rightarrow$$  $$\dfrac{\cos 2\left(\dfrac{A}{2}\right)}{\sin\dfrac{A}{2}.\cos\dfrac{A}{2}}$$

    $$\Rightarrow$$  $$\dfrac{\cos A}{\sin\dfrac{A}{2}.\cos\dfrac{A}{2}}$$

    $$\Rightarrow$$  $$\dfrac{2\cos A}{2\sin\dfrac{A}{2}.\cos\dfrac{A}{2}}$$

    $$\Rightarrow$$  $$\dfrac{2\cos A}{\sin 2\left(\dfrac{A}{2}\right)}$$

    $$\Rightarrow$$  $$\dfrac{2\cos A}{\sin A}$$

    $$\Rightarrow$$  $$2\cot A$$
  • Question 10
    1 / -0
    If $$ x + 1 / x = 2 $$ , the principal value of $$ sin^{-1}x $$ is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now