Self Studies

Trigonometric F...

TIME LEFT -
  • Question 1
    1 / -0

    The principal value of 
         $$ cos^{-1} \left (cos\dfrac{2\pi}{3} \right ) + sin^{-1} \left (sin\dfrac{2\pi}{3} \right ) $$ is

  • Question 2
    1 / -0

    Evaluate : $$ tan \left [ 2\, tan^{-1}\dfrac{1}{5} - \dfrac{\pi}{4} \right ] $$

  • Question 3
    1 / -0

    The value of $$ \dfrac{3 \pi}{4} $$ in sexagesimal system is:

  • Question 4
    1 / -0

    The value of $$ \dfrac{5}{16} $$ right angles in sexagesimal system is equal to 

  • Question 5
    1 / -0

    1 radian is equal to:

  • Question 6
    1 / -0

    How many right angles is equal to $$56^{\circ} 15' $$ ?

  • Question 7
    1 / -0

    The positive integer value of $$n >3$$ satisfying the equation
    $$ \displaystyle{\dfrac{1}{\sin \left(\dfrac{\pi}{n}\right)}=\dfrac{1}{\sin\left(\dfrac{2\pi}{n}\right)}+\dfrac{1}{\sin\left(\dfrac{3\pi}{n}\right)}
    }$$ is

  • Question 8
    1 / -0

    The solution set of the equation

    $$\tan(4 {k}+2) {x}- \tan(4 {k}+1) {x} - \tan(4 {k}+2) {x}\cdot\tan(4 {k}+1) {x}=1; {k}\in I$$ is

  • Question 9
    1 / -0

    The general solution of $$\sin x  - 3\sin 2x + \sin 3x
    = \cos x - 3\cos 2x + \cos 3x$$ is

  • Question 10
    1 / -0

    Assertion :  lf $$x = \sin (\alpha-\beta)\sin (\gamma-\delta)$$ ,$$y = \sin (\beta-\gamma) \sin (\alpha-\delta)$$, $$z = \sin (\gamma-\alpha) \sin (\beta-\delta)$$,  then $$x+y+z = 0$$
    Reason : $$2 \sin {A}\sin {B} = \cos {(A-B)}+\cos {(A+B)}$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now