Self Studies

Trigonometric Functions Test 26

Result Self Studies

Trigonometric Functions Test 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The principal value of 
         $$ cos^{-1} \left (cos\dfrac{2\pi}{3} \right ) + sin^{-1} \left (sin\dfrac{2\pi}{3} \right ) $$ is
    Solution

  • Question 2
    1 / -0
    Evaluate : $$ tan \left [ 2\, tan^{-1}\dfrac{1}{5} - \dfrac{\pi}{4} \right ] $$
    Solution

  • Question 3
    1 / -0
    The value of $$ \dfrac{3 \pi}{4} $$ in sexagesimal system is:
    Solution

  • Question 4
    1 / -0
    The value of $$ \dfrac{5}{16} $$ right angles in sexagesimal system is equal to 
    Solution

  • Question 5
    1 / -0
    1 radian is equal to:
    Solution

  • Question 6
    1 / -0
    How many right angles is equal to $$56^{\circ} 15' $$ ?
    Solution

  • Question 7
    1 / -0
    The positive integer value of $$n >3$$ satisfying the equation
    $$ \displaystyle{\dfrac{1}{\sin \left(\dfrac{\pi}{n}\right)}=\dfrac{1}{\sin\left(\dfrac{2\pi}{n}\right)}+\dfrac{1}{\sin\left(\dfrac{3\pi}{n}\right)}
    }$$ is
    Solution

    Given equation is 
    $$\displaystyle\dfrac  { 1 }{ \sin { \dfrac  { \pi  }{ n }  }  } =\dfrac  { 1 }{ \sin { \dfrac  { 2\pi  }{ n }  }  } +\dfrac  { 1 }{ \sin { \dfrac  { 3\pi  }{ n }  }  } $$
    $$\displaystyle\dfrac  { 1 }{ \sin { \dfrac  { \pi  }{ n }  }  } -\dfrac  { 1 }{ \sin { \dfrac  { 3\pi  }{ n }  }  } =\dfrac  { 1 }{ \sin { \dfrac  { 2\pi  }{ n }  }  } $$
    $$\displaystyle\dfrac  { \sin { \dfrac  { 3\pi  }{ n }  } - \sin { \dfrac  { \pi  }{ n }  }  }{ \sin { \dfrac  { 3\pi  }{ n }  } \sin { \dfrac  { \pi  }{ n }  }  } =\dfrac  { 1 }{ \sin { \dfrac  { 2\pi  }{ n }  }  } $$
    $$\displaystyle\dfrac  { 2\cos { \dfrac  { 2\pi  }{ n }  } \sin { \dfrac  { \pi  }{ n }  }  }{ \sin { \dfrac  { 3\pi  }{ n }  } \sin { \dfrac  { \pi  }{ n }  }  } =\dfrac  { 1 }{ \sin { \dfrac  { 2\pi  }{ n }  }  } $$
    $$\displaystyle\dfrac  { 2\cos { \dfrac  { 2\pi  }{ n }  }  }{ \sin { \dfrac  { 3\pi  }{ n }  }  } =\dfrac  { 1 }{ \sin { \dfrac  { 2\pi  }{ n }  }  } $$
    $$\displaystyle2\cos { \dfrac  { 2\pi  }{ n } \sin { \dfrac  { 2\pi  }{ n }  }  } =\sin { \dfrac  { 3\pi  }{ n }  } $$
    $$\displaystyle\sin { \dfrac  { 4\pi  }{ n }  } =\sin { \dfrac  { 3\pi  }{ n }  } $$
    The general solution for $$\sin { \theta  } =\sin { \alpha  } $$ is given by 
    $$\theta =p\pi +{ (-1) }^{ p }\alpha \quad ,\quad p\in I$$
    So, $$ \dfrac  { 4\pi  }{ n } =p\pi +{ (-1) }^{ p }\dfrac  { 3\pi  }{ n } \quad ,\quad p\in I$$
    If $$p = 2m $$ , then 
    $$\dfrac  { 4\pi  }{ n } =2m\pi +\dfrac  { 3\pi  }{ n } \quad $$
    $$\dfrac  { \pi  }{ n } =2m\pi $$
    or $$\dfrac  { 1 }{ n } =2m$$  , which is not possible. 
    So, let $$ p = 2m+1$$ then
    $$\dfrac  { 4\pi  }{ n } =(2m+1)\pi -\dfrac  { 3\pi  }{ n } \quad $$
    $$\dfrac  { 7\pi  }{ n } =(2m+1)\pi $$
    $$\dfrac  { 7 }{ n } =2m+1$$
    For $$m = 0, n=7 $$
    Hence, $$n = 7$$

  • Question 8
    1 / -0
    The solution set of the equation
    $$\tan(4 {k}+2) {x}- \tan(4 {k}+1) {x} - \tan(4 {k}+2) {x}\cdot\tan(4 {k}+1) {x}=1; {k}\in I$$ is
    Solution
    Domain of the given equation is 
    $$x\in R - \left\{ \dfrac{\pi}4,\dfrac{(2k+1)\pi}{(4k+1)2}\right\}$$

    Now, the equation can be written as 

    $$\dfrac{\tan(4k+2)x - \tan(4k+1)x}{1+\tan(4k+2)x\cdot\tan(4k+1)x} = 1$$

    $$\Rightarrow \tan(x) = 1$$

    $$\left(\text{Using } \tan(A-B) = \dfrac{\tan A - \tan B}{1+\tan A\cdot\tan B}\right)$$

    Now, solving for $$\tan x = 1$$, we get
    $$ x = n\pi + \dfrac{\pi}{4}$$
    But this value is not in domain.
    $$\therefore$$ their is no solution

    Hence, option A.
  • Question 9
    1 / -0
    The general solution of $$\sin x  - 3\sin 2x + \sin 3x
    = \cos x - 3\cos 2x + \cos 3x$$ is
    Solution

    using C-D formulae :
    we get
    $$ 2\sin 2x \cos x - 3\sin 2x = 2\cos 2x \cos x - 3\cos 2x$$
    $$ (2\cos x - 3)\sin 2x = (2\cos x - 3)\cos 2x$$
    $$ \cos 2x = \sin 2x$$
    $$ \tan 2x = 1 $$
    $$ x = \dfrac{n\Pi}{2} + \dfrac{\Pi}{8}$$

  • Question 10
    1 / -0
    Assertion :  lf $$x = \sin (\alpha-\beta)\sin (\gamma-\delta)$$ ,$$y = \sin (\beta-\gamma) \sin (\alpha-\delta)$$, $$z = \sin (\gamma-\alpha) \sin (\beta-\delta)$$,  then $$x+y+z = 0$$
    Reason : $$2 \sin {A}\sin {B} = \cos {(A-B)}+\cos {(A+B)}$$
    Solution
    Assertion is true as
    $$x = \sin (\alpha -\beta )\sin (\gamma -\beta)= (\sin \alpha \cos \beta -\cos \alpha \sin beta ) (\sin \gamma \cos \delta -\cos \gamma  sin \delta )$$
    $$=\sin \alpha \cos \beta sin \gamma \cos \delta - \sin \alpha \cos \beta \cos \gamma \sin \delta -\cos \alpha \sin \beta \sin \gamma \cos \gamma +\cos \alpha \sin \beta \cos \gamma \sin \delta$$
    $$y=\sin (\beta -\gamma)\sin (\alpha -\delta)=(\sin \beta \cos \gamma -\cos \beta \sin \gamma) (\sin \alpha \cos \delta -\cos \alpha sin \gamma)$$
    $$=sin \alpha \sin \beta \cos \gamma \cos \delta - \cos \alpha \sin \beta \cos \gamma \sin \delta - \sin \alpha \cos \beta \sin \gamma \cos \delta + cos \alpha \cos \beta \sin \gamma \sin \delta$$
    $$z = \sin (\gamma -\alpha) \sin (\beta -\gamma)=(\sin \gamma \cos \alpha - \cos \gamma \sin \alpha ) (\sin \beta \cos \delta -\cos \beta \sin \delta )$$
    $$=\cos \alpha \sin \beta \sin \gamma \cos \delta - \cos \alpha \cos \beta \sin \gamma \sin \delta -\sin \alpha \sin \beta \cos \gamma \cos \delta +\sin \alpha \cos \beta \cos \gamma \sin \delta$$
    $$x+y+z=0$$
    Reason is false as
    $$2\sin {A} \sin {B}=\cos (A-B)-\cos (A+B)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now