Assertion is true as
$$x = \sin (\alpha -\beta )\sin (\gamma -\beta)= (\sin \alpha \cos \beta -\cos \alpha \sin beta ) (\sin \gamma \cos \delta -\cos \gamma sin \delta )$$
$$=\sin \alpha \cos \beta sin \gamma \cos \delta - \sin \alpha \cos \beta \cos \gamma \sin \delta -\cos \alpha \sin \beta \sin \gamma \cos \gamma +\cos \alpha \sin \beta \cos \gamma \sin \delta$$
$$y=\sin (\beta -\gamma)\sin (\alpha -\delta)=(\sin \beta \cos \gamma -\cos \beta \sin \gamma) (\sin \alpha \cos \delta -\cos \alpha sin \gamma)$$
$$=sin \alpha \sin \beta \cos \gamma \cos \delta - \cos \alpha \sin \beta \cos \gamma \sin \delta - \sin \alpha \cos \beta \sin \gamma \cos \delta + cos \alpha \cos \beta \sin \gamma \sin \delta$$
$$z = \sin (\gamma -\alpha) \sin (\beta -\gamma)=(\sin \gamma \cos \alpha - \cos \gamma \sin \alpha ) (\sin \beta \cos \delta -\cos \beta \sin \delta )$$
$$=\cos \alpha \sin \beta \sin \gamma \cos \delta - \cos \alpha \cos \beta \sin \gamma \sin \delta -\sin \alpha \sin \beta \cos \gamma \cos \delta +\sin \alpha \cos \beta \cos \gamma \sin \delta$$
$$x+y+z=0$$
Reason is false as
$$2\sin {A} \sin {B}=\cos (A-B)-\cos (A+B)$$