Self Studies

Trigonometric Functions Test 27

Result Self Studies

Trigonometric Functions Test 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\mathrm{s}in(\pi \mathrm{c}\mathrm{o}s\theta)= \mathrm{c}os$$$$(\pi\sin\theta)$$ , then which of the following is correct
    Solution
    $$\sin(\pi \cos\theta)= \cos (\pi\sin\theta)$$

    $$\Rightarrow \sin(\pi \cos\theta)= \sin (\dfrac{\pi}{2}-\pi\sin\theta)$$

    $$\Rightarrow (\pi \cos\theta)= (\dfrac{\pi}{2}-\pi\sin\theta)$$  or $$ \pi \cos\theta +\pi \sin \theta =\dfrac{\pi}{2} $$

    $$\displaystyle \Rightarrow \cos\theta + \sin\theta = \frac{1}{2}$$ or $$ \cos\theta -\sin\theta = \dfrac{1}{2} $$

    Let us consider the first case, 

    $$\displaystyle \Rightarrow  \frac{1}{\sqrt{2}}\cos\theta + \frac{1}{\sqrt{2}}\sin\theta = \frac{1}{2\sqrt{2}}$$ 

    $$ \displaystyle \Rightarrow cos\left(\frac{\pi}{4}-\theta \right)=\frac{1}{2\sqrt{2}}$$ 

    Similarly, we can show that, 

    $$\cos \left(\theta +\dfrac{\pi}{4} \right) = \dfrac{1}{2\sqrt2}$$
  • Question 2
    1 / -0
     If $$\tan\theta=\displaystyle \dfrac{x\sin\phi}{1-x\cos\phi}$$, $$\displaystyle \tan\phi=\dfrac{y\sin\theta}{1-y\cos\theta}$$ , then $$\displaystyle \dfrac{x}{y}=$$
    Solution
    $$\displaystyle tan \theta =\frac{x sin \phi }{1-x cos \phi }$$
    $$sin \theta -x sin \theta cos \phi =x cos \theta sin \phi $$
    $$\displaystyle x=\frac{sin \theta }{sin (\theta + \phi )}$$
    Similarly,$$\displaystyle y=\frac{sin \phi }{sin (\theta +\phi )}$$
    $$\displaystyle \therefore \frac{x}{y}=\frac{sin \theta }{sin \phi }$$
  • Question 3
    1 / -0
    If $$ 32\tan^{8}\theta=2\cos^{2}\alpha-3\cos\alpha$$ and $$3\cos2\theta=1$$ then the general value of $$\alpha$$ is
    Solution
    Given, 
    $$32 \tan^{8}\theta=2\cos^2 \alpha-3\cos \alpha$$...............(i)

    $$3\cos2\theta = 1$$

    This gives  $$\dfrac{1 - \tan^{2}\theta}{1 + \tan^{2}\theta} = \dfrac13$$

    So, $$ \tan^{2}\theta = \dfrac{1}{2}$$

    Given equation (i) becomes
     
    $$32 (\tan^{2} \alpha)^4 = 2\cos^{2}\alpha - 3\cos\alpha$$

    $$\Rightarrow 32\times \dfrac1{16}=2 \cos^2{\alpha}-3\cos \alpha$$

    $$\Rightarrow 2=2 \cos^2{\alpha}-3\cos \alpha$$

    $$\Rightarrow 2 \cos^2{\alpha}-3\cos \alpha-2=0$$

    $$\Rightarrow 2\cos^2 \alpha-4\cos \alpha+\cos \alpha-2=0$$

    $$\Rightarrow 2\cos \alpha(\cos \alpha -2)+1(\cos \alpha-2)=0$$

    $$\Rightarrow (2\cos \alpha+1)(\cos \alpha-2)=0$$

    So, $$ \cos\alpha = -\dfrac{1}{2}$$ or $$\cos\alpha = 2$$

    $$\because \cos \alpha \neq 2$$

    $$\therefore \cos\alpha = -\dfrac12 \Rightarrow \alpha=\dfrac{2\pi}{3}$$

    So. general solution is $$\alpha=2n\pi \pm \dfrac{2\pi}{3}$$

    Hence, the correct answer is B
  • Question 4
    1 / -0
    The values of $$x$$ between $$0$$ and $$2p$$ which satisfy the equation $$\sin x\sqrt{8\cos^{2}x}=1$$ are in A.P. The common difference of the A.P. is


    Solution

    $$\sin  x \sqrt{8 \cos  ^{2}x}=1 \sin  x > 0$$
    $$8 \sin  ^{2}x \cos  ^{2}x =1$$
    $$2(\sin  2x)^{2}=1$$
    $$\displaystyle \sin  2x=+\frac{1}{\sqrt{2}} , -\frac{1}{\sqrt{2}}$$
    $$\displaystyle 2x=\frac{\pi }{4} , \frac{3\pi }{4}$$
    $$\displaystyle x=\frac{\pi }{8}, \frac{3\pi }{8}$$ are in A.P.
    $$\therefore $$ common diff $$\displaystyle =\frac{3\pi }{8} - \frac{\pi }{8} =\frac{2\pi }{8}=\frac{\pi }{4}$$

  • Question 5
    1 / -0

    $$|\tan x + \sec x| = |\tan x| - |\sec x|, x \epsilon [0,2\pi]$$if and only if x belongs to the interval

    Solution

    $$|\tan x + \sec x| = |\tan x| - |\sec x|$$

    Then $$\tan x . \sec x \leq 0$$ and  $$ |\tan  x| \geq |\sec  x|$$

    $$Now, |\tan x| \geq |\sec x|$$

    $$\Rightarrow \tan ^2x \geq \sec ^2x$$

    $$\Rightarrow \tan ^2x \geq 1+ \tan ^2x \Rightarrow 0 \geq 1 $$ This is not possible.

  • Question 6
    1 / -0
    The total number of solutions of $$\cos x=\sqrt{1-\sin 2x}$$ in $$\left [ 0,2\pi  \right ]$$ is equal to
    Solution
    $$\cos x=\sqrt{1-\sin 2x}=\left | \sin x -\cos x\right |$$

    (a) $$\sin x< \cos x\Rightarrow x\in \left [ 0,\frac{\pi }{4})\cup (\frac{5\pi }{4},2\pi  \right ]$$
    Then the given equation is $$\cos x=\cos x-\sin x$$
    $$ \sin x=0\Rightarrow x=0,\pi ,2\pi \left [ from equ.(i) \right ]$$
    $$x=\pi $$ is not possible

    (b) $$\sin x\geq \cos x\Rightarrow x\in \left [ \frac{\pi }{4},\frac{5\pi }{4} \right ]$$

    $$ \cos x=\sin x -\cos x$$

    $$ \tan x=2$$

    $$x=\tan ^{-1}2$$

    Hence, there are three solutions.
  • Question 7
    1 / -0
    Find the value of $$\cot^{-1}\left(\dfrac{\sqrt {1-\sin x}+\sqrt {1+\sin x}}{\sqrt {1-\sin x}-\sqrt {1+\sin x}}\right)$$
    Solution

  • Question 8
    1 / -0

    Directions For Questions

    The trigonometric equation is-
    $$\sin x+3 \sin 2x+\sin 3x=\cos x+3 \cos 2x+\cos 3x$$
    when $$x$$ lies in first four quadrants. It means $$x\epsilon [0, 2\pi]$$, then-

    ...view full instructions

    The difference between greatest and least solution of $$x$$ is-
    Solution
    Given equation is 
    $$\sin\,x+3\,\sin\,2x+\sin\,3x=\cos\,x+3\,\cos\,2x+\cos\,3x$$ 
    $$(\sin x+\sin\,3x)+3\sin\,2x=(\cos x+\cos\,3x)+3\cos\,2x$$
    $$(2\sin\,2x\,\cos x+3\sin\,2x)-(2\cos\,2x\,\cos x+3\cos\,2x)=0$$
    $$\sin\,2x(2\cos\,x+3)-\cos\,2x(2\cos\,x+3)=0$$
    $$\Rightarrow (\sin 2x-\cos 2x)(2\cos x+3)=0$$
    $$cos\,x=-\displaystyle\frac{3}{2}$$ 
    which is not possible
    $$\sin\,2x=\cos\,2x$$
    $$\tan\,2x=1$$
    $$\tan 2x=tan\displaystyle\frac{\pi}{4}, \tan\frac{5\pi}{4}$$
    $$x=\displaystyle\frac{\pi}{8},\dfrac{5\pi}{8}$$
    Required difference $$\dfrac{5\pi}{8}-\dfrac{\pi}{8}=\dfrac{\pi}{2}$$
  • Question 9
    1 / -0
    The value of $$\dfrac{\tan \alpha}{1-\cot \alpha}+\dfrac{\cot \alpha}{1-\tan \alpha}$$ is identically equal to
    Solution

    $$\dfrac{\tan\alpha}{1-\cot\alpha}+\dfrac{\cot\alpha}{1-\tan\alpha}$$

    $$=\dfrac{\tan\alpha}{1-\dfrac{1}{\tan\alpha}}+\dfrac{\cot\alpha}{1-\tan\alpha}$$

    $$=\dfrac{\tan^2\alpha}{\tan\alpha-1}-\dfrac{\cot\alpha}{\tan\alpha-1}$$

    $$=\dfrac{\tan^2-\dfrac{1}{\tan\alpha}}{\tan\alpha-1}$$

    $$=\dfrac{\tan^3\alpha-1}{(\tan\alpha)(\tan\alpha-1)}$$

    $$=\dfrac{(\tan\alpha-1)(\tan^2\alpha+\tan\alpha+1)}{(\tan\alpha)(\tan\alpha-1)}$$

    $$=\dfrac{\tan^2\alpha+\tan\alpha+1}{\tan\alpha}$$

    $$={\tan\alpha+1+\cot\alpha}$$

    $$=\dfrac{\sin\alpha}{\cos\alpha}+\dfrac{\cos\alpha}{\sin\alpha}+1$$

    $$=\dfrac{\sin^2\alpha+\cos^2\alpha}{\cos\alpha \sin\alpha}+1$$

    $$=\dfrac{1}{\cos\alpha \sin\alpha}+1$$

    $$=\sec\alpha\:\csc\alpha+1$$

    Hence answer is C

  • Question 10
    1 / -0
    If $$ \cos \theta - \sin \theta =\sqrt{2} \sin \theta$$, then $$ \cos \theta + \sin \theta$$ is
    Solution
    Given, 
    $$\cos \theta - \sin \theta =\sqrt{2} \sin \theta$$

    Squaring, we get
    $$\cos^2\theta+\sin^2\theta-2 \sin \theta \cos \theta=2 \sin^2 \theta$$
    or $$ 1-2 \sin \theta \cos \theta=2(1-\cos^2 \theta)$$
    or $$1+2 \sin \theta \cos \theta =2 \cos^2 \theta$$
    or $$ \sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta = 2 \cos^2 \theta$$ 
    or $$ (\sin \theta + \cos \theta)^2=2 \cos^2 \theta$$

    $$\therefore \sin \theta + \cos \theta =\sqrt{2} \cos \theta$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now