Self Studies

Trigonometric Functions Test 28

Result Self Studies

Trigonometric Functions Test 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The trigonometric equation is-
    $$\sin x+3 \sin 2x+\sin 3x=\cos x+3 \cos 2x+\cos 3x$$
    when $$x$$ lies in first four quadrants. It means $$x\epsilon [0, 2\pi]$$, then-

    How many solutions are there-
    Solution
    $$\sin x+3 \sin 2x+\sin 3x=\cos x+3 \cos 2x+\cos 3x$$

    $$2\sin { 2x } \cos { x } +3\sin { 2x } =2\cos { 2x } \cos { x } +3\cos { 2x } $$

    $$\Rightarrow (\sin { 2x-\cos { 2x } ) } (2\cos { x } +3)=0$$

    $$\Rightarrow \tan 2x=1, \cos x=-\displaystyle \frac{3}{2}$$ (not possible)

    Since, $$0 \le x\le 2\pi$$

    $$0 \le 2x \le 4\pi$$

    Hence, there are a number of solutions $$ = 4$$
  • Question 2
    1 / -0
    If $$\sec$$ $$\beta=\alpha+\dfrac{1}{4a}$$,then the value of $$\sec\beta+\tan\beta$$ is

    Solution

    We know that

    $$\sec^2\beta-\tan^2\beta=1$$

    Therefore

    $$\tan\beta=\pm\sqrt{\sec^2\beta-1}$$

    $$\tan\beta=\pm\sqrt{\alpha^2+(\dfrac{1}{4\alpha})\:^2+\dfrac{1}{2}}-1$$

    $$\tan\beta=\pm\sqrt{\alpha^2+(\dfrac{1}{4\alpha})\:^2-\dfrac{1}{2}}$$

    $$\tan\beta=\pm\sqrt{(\alpha-\dfrac{1}{4\alpha})\:^2}$$

    $$\tan\beta=\pm(\alpha-\dfrac{1}{4\alpha})$$ ...(i)

    Hence $$sec\alpha+\tan\alpha=2\alpha\:or\:\dfrac{1}{2\alpha}$$

    The answer is B

  • Question 3
    1 / -0
    $$|\tan\theta+\sec\theta|=|\tan\theta|+|\sec\theta|, 0\leq \theta \leq 2\pi$$  is possible only if-
    Solution
    $$\mid \tan\theta+\sec\theta \mid=\mid \tan\theta \mid +\sec\theta$$
    Case 1:-
    If $$\theta \in [0, \cfrac{\pi}{2})$$ then $$\tan\theta=+ve , \,\, \sec\theta=+ve$$
    $$\tan\theta+\sec\theta=+ve$$
    $$\therefore \mid \sec\theta+\tan\theta \mid =\mid \tan\theta \mid +\mid \sec\theta \mid$$

    Case 2:-
    $$\theta \in (\cfrac{\pi}{2}, \pi]$$
    $$\tan\theta=-ve , \,\, \sec\theta=-ve$$
    $$\mid \sec\theta+\tan\theta \mid=+ve$$
    $$\mid \sec\theta \mid=+ve \,\,\, \mid \tan\theta \mid=+ve$$
    $$\mid \sec\theta+\tan\theta \mid=\mid \sec\theta \mid +\mid \tan\theta \mid$$

    Case 3:-
    $$\theta \in [ \pi,\cfrac{3\pi}{2}]$$
    $$\tan\theta=+ve , \,\, \sec\theta=-ve$$
    $$\mid \sec\theta+\tan\theta \mid=\tan\theta-\sec\theta$$
    $$\mid \tan\theta \mid +\mid \sec\theta \mid=\sec\theta+\tan\theta$$
    $$\mid \sec\theta+\tan\theta \mid \ne \mid \sec\theta \mid +\mid \tan\theta \mid$$

    Case 4:-
    $$\theta \in (\cfrac{3\pi}{2}, 2\pi]$$
    $$\tan\theta=-ve , \,\, \sec\theta=+ve$$
    $$\mid \sec\theta+\tan\theta \mid=\sec\theta -\tan\theta$$
    $$\mid \sec\theta \mid=\sec\theta \,\,\, \mid \tan\theta \mid=\tan\theta$$
    $$\mid \sec\theta+\tan\theta \mid \ne \mid \sec\theta \mid +\mid \tan\theta \mid$$

    $$\theta \ne \cfrac{\pi}{2}$$ because in that case $$\tan\theta=\infty$$
  • Question 4
    1 / -0

    Directions For Questions

    The trigonometric equation is-
    $$\sin x+3 \sin 2x+\sin 3x=\cos x+3 \cos 2x+\cos 3x$$
    when $$x$$ lies in first four quadrants. It means $$x\epsilon [0, 2\pi]$$, then-

    ...view full instructions

    The sum of the solution of $$x$$ is-
    Solution
    Given equation is 
    $$\sin\,x+3\,\sin\,2x+\sin\,3x=\cos\,x+3\,\cos\,2x+\cos\,3x$$ 
    $$(\sin x+\sin\,3x)+3\sin\,2x=(\cos x+\cos\,3x)+3\cos\,2x$$
    $$(2\sin\,2x\,\cos x+3\sin\,2x)-(2\cos\,2x\,\cos x+3\cos\,2x)=0$$
    $$\sin\,2x(2\cos\,x+3)-\cos\,2x(2\cos\,x+3)=0$$
    $$\Rightarrow (\sin 2x-\cos 2x)(2\cos x+3)=0$$
    $$cos\,x=-\displaystyle\frac{3}{2}$$ 
    which is not possible
    $$\sin\,2x=\cos\,2x$$
    $$\tan\,2x=1$$
    $$\tan 2x=tan\displaystyle\frac{\pi}{4}, \tan\frac{5\pi}{4}$$
    $$x=\displaystyle\frac{\pi}{8},\dfrac{5\pi}{8}$$
    Required sum $$=\dfrac{5\pi}{8}+\dfrac{\pi}{8}=\frac{3\pi}{4}$$
  • Question 5
    1 / -0
    Consider the system of equations $$\displaystyle \sin x \cos 2y= (a^{2}-1)^{2}+1,\ \cos x\sin 2y= a+1$$, then the number of values of $$\displaystyle y\in [0,2\pi]$$ when the system has solution for permissible values of $$a$$ are,
    Solution

  • Question 6
    1 / -0
    The value of $$\displaystyle \sin ^{2}1^{\circ}+\sin ^{2}2^{\circ}+\sin ^{2}2^{\circ}+...+\sin ^{2}89^{\circ}+\sin ^{2}90^{\circ}$$
    Solution
    $$\displaystyle \sin ^{2}1^{\circ}+\sin ^{2}2^{\circ}+\sin ^{2}2^{\circ}+...+\sin ^{2}89^{\circ}+\sin ^{2}90^{\circ}$$
    = $$(\sin^2 1 + \sin^2 89) + (\sin^2 + \sin^288) + ....+ (\sin^2 44 + \sin^2 46) + (\sin^245 + \sin^ 90)$$
    = $$(\sin^2 1 + \cos^2 (90 - 1)) + (\sin^2 + \cos^2(90 - 2)) + ....+ (\sin^2 44 + \sin^2 (90 - 44)) + (\sin^245 + \sin^ 90)$$
    = $$(\sin^2 1 + \sin^2 1) + (\sin^2 + \sin^2 2) + ....+ (\sin^2 44 + \cos^2 44) + (\sin^245 + \sin^ 90)$$
    = $$1 + 1 ...44 times + (\dfrac{1}{\sqrt{2}})^2  +1$$
    = $$45 + \dfrac{1}{2}$$
    = $$45.5$$
  • Question 7
    1 / -0
    Consider the system of equations $$\displaystyle \sin x. \cos 2y= (a^{2}-1)^{2}+1,\ \cos x.\sin 2y= a+1$$, then the number of values of $$\displaystyle x\epsilon [0,2\pi]$$ when the system has a solution for permissible values of a is/are,
    Solution

  • Question 8
    1 / -0
    The total number of solutions of $$\displaystyle \sin \left \{ x \right \}=\cos \left \{ x \right \}$$ (where $$\displaystyle  \left \{ . \right \}$$ denotes the fractional part) in $$\displaystyle  \left [ 0,2\pi  \right ]$$ is equal to

    Solution
    $$ \sin\{x\} = \cos\{x\} $$

    $$\Rightarrow \tan\{x\} = 1 $$

    thus general solution is,

    $$ \{x\} = x - [x] = n\pi + \dfrac{\pi}{4} $$, where n is any integer

    hence solution in the given interval is,

    $$ x = \dfrac{\pi}{4}, 1 + \dfrac{\pi}{4}, 2 + \dfrac{\pi}{4}, 3 + \dfrac{\pi}{4}, 4 + \dfrac{\pi}{4}, 5 + \dfrac{\pi}{4}$$

    Hence, option 'B' is correct.
  • Question 9
    1 / -0
    In the given figure, $$\displaystyle \angle B =90^{\circ}$$ and $$\displaystyle \angle ADB=x^{\circ}$$, then find $$\displaystyle \cos^{2} C^{\circ}+\sin^{2} C^{\circ} $$.

    Solution
    In $$\triangle CAB$$,

    $$CA = 20$$ and $$AB = 12$$

    Using Pythagoras theorem,
    $$CA^2 = AB^2 + BC^2$$
    $$20^2 = 12^2 + BC^2$$
    $$BC = 16$$

    $$\cos^2 C + \sin^2 C = \left (\dfrac{BC}{AC}\right )^2 + \left (\dfrac{AB}{AC}\right )^2$$

    = $$\left (\dfrac{16}{20}\right )^2 + \left (\dfrac{12}{20}\right )^2$$

    = $$\dfrac{256 + 144}{400}$$

    = $$\dfrac{400}{400}$$

    = $$1$$
  • Question 10
    1 / -0
    The number of real solutions of $$\sin e^{x}.\cos e^{x}=2^{x-2}+2^{-x-2}$$ is
    Solution
    $$\sin e^{x}.\cos e^{x}=2^{x-2}+2^{-x-2}$$ 
    $$\Rightarrow \sin { 2e^{ x } } =2^{ x-1 }+2^{ -x-1 }$$
    $$\Rightarrow 2\sin { 2e^{ x } } =2^{ x }+2^{ -x }$$
    $$\Rightarrow \displaystyle \frac { 1 }{ 2 } \sin { 2e^{ x } } =\frac { 1 }{ 4 } (2^{ x }+2^{ -x })$$
    For any real value of $$x$$, $$2^x+2^{-x} \ge 2$$
    $$\Rightarrow \displaystyle \frac { 1 }{ 2 } \sin { 2e^{ x } } \ge \frac { 1 }{ 2 } $$
    $$\Rightarrow \sin { 2e^{ x } } \ge 1$$
    But $$\sin 2e^x \le 1$$
    So, $$\sin 2e^x=1$$
    But equality can hold only if RHS also equals $$1$$ , which is possible only when $$x=0$$
    Hence, 
    $$\sin 2e^x=1$$ is not true
    Hence, there is no solution.


Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now