Self Studies

Trigonometric Functions Test 32

Result Self Studies

Trigonometric Functions Test 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$cos\alpha+cos\beta+cos\gamma= 0= sin\alpha+sin\beta+sin\gamma$$ then $$cos2^n\alpha+cos2^n\beta+cos2^n\gamma=?$$
  • Question 2
    1 / -0
    If $$\cos 3x+\sin\left(2x-\dfrac{7\pi}{6}\right)=-2$$, then $$x$$ is equal to $$\left(where\ m\in  Z\right)$$ 
    Solution

  • Question 3
    1 / -0
    If $${ tan }^{ 2 }\theta +{ cot }^{ 2 }\theta =\frac { a }{ b-cos4\theta  } +c$$ (where defined) is satisfied for all $$\theta $$, then the value of (a + b + c) is equal to $$(a,b,c\in I)$$
    Solution

  • Question 4
    1 / -0
    If $$sin({ cot }^{ -1 }(x+1)=cos({ tan }^{ -1 }x)$$, then x is equal to 
    Solution

  • Question 5
    1 / -0
    The value of $$\sin{\left(\alpha+\beta\right)}$$ is 
    Solution

  • Question 6
    1 / -0
    If $$cos(\alpha +\beta )sin(\gamma +\delta )=cos(\alpha -\beta )sin(\gamma -\delta )$$ then 
    Solution
    $$(\cos \alpha \cos \beta-\sin \alpha \sin \beta)(\sin y \cos \delta+\cos y \sin \delta)=$$
    $$(\cos \alpha \cos \beta+\sin \alpha \sin \beta)(\sin y \cos \delta-\cos y \sin \delta)$$
    $$\Rightarrow \quad 2 \cos \alpha \cos \beta \cos y \sin \delta=2$$ sin $$\alpha$$ sin $$\beta$$ siny cos $$\delta$$
    $$=\dfrac{\cos \alpha}{\sin \alpha} \times \dfrac{\cos \beta}{\sin \beta} \times \dfrac{\cos y}{\sin y}=\dfrac{\cos \delta}{\sin \delta}$$
    $$=\cot \alpha \cot \beta \cot y=\cot \delta$$
    $$\therefore$$ option $$D$$ is correct.
  • Question 7
    1 / -0
    In a $$\triangle ABC, \sum a \cos A=4 \sin A \sin B \sin C$$, then value of $$\left(\dfrac{\sum \sin A}{\sum a}\right)^{2}$$ is-
    Solution

  • Question 8
    1 / -0
    $$sin\left( { 4tan }^{ -1 }{ \cfrac { 1 }{ 3 }  } \right) =$$
    Solution

  • Question 9
    1 / -0
    If $$0 < \phi < \dfrac {\pi}{2}$$ and if $$\displaystyle x=\sum^{\alpha}_{n=0}\cos^{2}\phi:y=\sum^{\alpha}_{n=0}\sin^{2n}\phi$$ then 
    Solution

  • Question 10
    1 / -0
    The value of $$\cos^2 \theta + \cos^2 \left(\dfrac{2\pi}{2} - \theta\right) + \cos^2 \left(\dfrac{2\pi}{3} + \theta \right)$$ is
    Solution
    $$ \begin{aligned} & \cos ^{2} \alpha+\cos ^{2}\left(\frac{2 \pi}{3}+\alpha\right)+\cos ^{2}\left(\frac{2 \pi}{3}-\alpha\right) \\ =& \cos ^{2} \alpha+\left(\cos \left(\frac{2 \pi}{3}\right) \cos \alpha-\sin \left(\frac{2 \pi}{3}\right) \sin \alpha\right)^{2} \\ &+\left(\cos \left(\frac{2 \pi}{3}\right) \cos \alpha+\sin \left(\frac{2 \pi}{3}\right) \sin \alpha\right)^{2} \\ &=\cos ^{2} \alpha+\left(\frac{-1}{2} \cos \alpha-\frac{\sqrt{3}}{2} \sin \alpha\right)^{2}+\left(\frac{-1}{2} \cos \alpha\right.\\ &\left.+\frac{\sqrt{3}}{2} \sin \alpha\right)^{2} \\ &=\cos ^{2} \alpha+\frac{1}{4} \cos ^{2} \alpha+\frac{3}{4} \sin ^{2} \alpha+\frac{\sqrt{3}}{2} \cos \alpha \sin \alpha \\ &+\frac{1}{4} \cos ^{2} \alpha+\frac{3}{4} \sin ^{2} \alpha-\frac{\sqrt{3}}{2} \cos \alpha \sin \alpha \\ &=\frac{3}{2} \cos ^{2} \alpha+\frac{3}{2} \sin ^{2} \alpha \\ &=\frac{3}{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right) \\ &=\frac{3}{2} \\ & \text { option } B \text { is correct } \end{aligned} $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now