Self Studies

Trigonometric F...

TIME LEFT -
  • Question 1
    1 / -0

    If

     $$x=sin\left(2\tan^{-1}2\right), y=\sin\left(\dfrac{1}{2}\tan^{-1}\dfrac{4}{3}\right)$$. Then

  • Question 2
    1 / -0

    The smallest positive number p for which the equation cos (p sin x) = sin (p cos x) has a solution in $$[0, 2 \pi]$$ is 

  • Question 3
    1 / -0

    If $$sin \alpha + sin \beta = \dfrac{1}{2} $$ and $$cos \alpha + cos \beta = \dfrac{\sqrt{3}}{2}$$ then $$3 \beta + \alpha = $$

  • Question 4
    1 / -0

    In $$\Delta ABC, \sum \dfrac{b^2 - c^2}{a^2} sin \, 2A$$ = 

  • Question 5
    1 / -0

    $$[3(\sin(\cos\ 1)+\cos(\cos\ 1))]$$ is equal to (where[.] is denotes the greatest integer function)

  • Question 6
    1 / -0

    If $$sin\alpha sin \beta  - cos \alpha  \beta  - 1,  = 0$$ then the value of  $$cot \alpha  tan \beta $$  is 

  • Question 7
    1 / -0

    If $$x=\sin\alpha+\sin\beta$$ and $$y=\cos\alpha+\cos\beta$$
    then $$x=\tan\alpha+\tan\beta=$$

  • Question 8
    1 / -0

    The value of $$\csc \dfrac{\pi}{13}-\sqrt{3} \sec \dfrac{\pi}{18}$$ is a 

  • Question 9
    1 / -0

    If $$\cos^{2} \theta + 3\cos^{2}\theta + 4\sin^{2}\theta + .... (200) terms = 10025$$, where $$\theta$$ is an acute angle, then the value of $$\sin \theta - \cos \theta$$ is

  • Question 10
    1 / -0

    The number of solution of the equation $${x^3} + 2{x^2} + 5x + 2\cos x = 0\,in\,[0,2\pi ]$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now