Self Studies

Trigonometric Functions Test 33

Result Self Studies

Trigonometric Functions Test 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If
     $$x=sin\left(2\tan^{-1}2\right), y=\sin\left(\dfrac{1}{2}\tan^{-1}\dfrac{4}{3}\right)$$. Then
    Solution

  • Question 2
    1 / -0
    The smallest positive number p for which the equation cos (p sin x) = sin (p cos x) has a solution in $$[0, 2 \pi]$$ is 
    Solution

    $$ \begin{aligned} &\begin{aligned} &-\cos (p \sin x)=\sin (p \cos x) \\ \Rightarrow & \cos (p \sin x)=\cos \left(\frac{\pi}{2}-p \cos x\right) \end{aligned}\\ &2 sin x \pm\left(\frac{\pi}{2}-p \cos x\right) \quad(n \geqslant 0)\\ &\Rightarrow p \sin x+p \cos x=2 n \pi+\frac{\pi}{2}\\ &4\\ &p \sin x-p \cos x=2 n \pi-\frac{\pi}{2}\\ &\Rightarrow p \sqrt{2}\left(\sin \left(x+\frac{\pi}{4}\right)\right)=\frac{(4 n+1)}{2} \pi \end{aligned} $$
    or $$\frac{\sqrt{2}\left(\sin \left(x-\frac{\pi}{4}\right)\right)}=\frac{(4 n-1) n}{2}$$
    As $$-1 \leq \sin \left(x+\frac{\pi}{4}\right) \leqslant 1$$
    $$\Rightarrow-p \sqrt{2} \leq p \sqrt{2} \sin \left(x+\frac{\pi}{4}\right) \leqslant p \sqrt{2}$$
    $$\Rightarrow-p \sqrt{2} \leq\left(\frac{4 n+1}{2}\right) \pi \leq p \sqrt{2} \quad$$... (i)
    And similarly,
    $$\Rightarrow-p \sqrt{2} \leq\left(\frac{4 n-1}{2}\right)^{n} \leq p \sqrt{2}$$
    (ii) is subset of (i),
    $$\therefore$$ We can consider only (i).
    If $$\begin{array}{ll}n \geqslant 0, & \left(\frac{4 n+1}{2}\right) \pi \Rightarrow\left(\frac{4 n+1}{2}\right) n \leqslant \sqrt{2} p\end{array}$$
    $$\Rightarrow \sqrt{2} p \geqslant \frac{\pi}{2}$$
    $$\Rightarrow p \geqslant \frac{\pi}{2 \sqrt{2}} \Rightarrow \quad p \geqslant \frac{\pi \sqrt{2}}{4}$$
    $$\therefore$$ option $$D$$ is correct.
  • Question 3
    1 / -0
    If $$sin \alpha + sin \beta = \dfrac{1}{2} $$ and $$cos \alpha + cos \beta = \dfrac{\sqrt{3}}{2}$$ then $$3 \beta + \alpha = $$
    Solution

  • Question 4
    1 / -0
    In $$\Delta ABC, \sum \dfrac{b^2 - c^2}{a^2} sin \, 2A$$ = 
    Solution

  • Question 5
    1 / -0
    $$[3(\sin(\cos\ 1)+\cos(\cos\ 1))]$$ is equal to (where[.] is denotes the greatest integer function)
    Solution

  • Question 6
    1 / -0
    If $$sin\alpha sin \beta  - cos \alpha  \beta  - 1,  = 0$$ then the value of  $$cot \alpha  tan \beta $$  is 
    Solution

  • Question 7
    1 / -0

    If $$x=\sin\alpha+\sin\beta$$ and $$y=\cos\alpha+\cos\beta$$
    then $$x=\tan\alpha+\tan\beta=$$

    Solution

  • Question 8
    1 / -0
    The value of $$\csc \dfrac{\pi}{13}-\sqrt{3} \sec \dfrac{\pi}{18}$$ is a 
    Solution

  • Question 9
    1 / -0
    If $$\cos^{2} \theta + 3\cos^{2}\theta + 4\sin^{2}\theta + .... (200) terms = 10025$$, where $$\theta$$ is an acute angle, then the value of $$\sin \theta - \cos \theta$$ is
    Solution

  • Question 10
    1 / -0
    The number of solution of the equation $${x^3} + 2{x^2} + 5x + 2\cos x = 0\,in\,[0,2\pi ]$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now