Self Studies

Trigonometric Functions Test 34

Result Self Studies

Trigonometric Functions Test 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$a+b=3-\cos { 4\theta  } $$ and $$a-b=4\sin { 2\theta  } $$, then (ab) is always less then equal to
    Solution

  • Question 2
    1 / -0
    If $$a=\cos { \alpha +\cos { \beta -\cos { (\alpha +\beta ),\quad b=4\sin { \frac { \alpha  }{ 2 } \sin { \frac { \beta  }{ 2 } \cos { (\frac { \alpha +\beta  }{ 2 } ) }  }  }  }  }  } $$ then a-b=
    Solution

  • Question 3
    1 / -0
    If $$\csc\theta=\dfrac{x^{2}-y^{2}}{x^{2}+y^{2}}$$ where $$x$$ and $$y$$ are two unequal non-zero real numbers, then the number of real values of $$\theta$$ is 
    Solution

  • Question 4
    1 / -0
    $$\displaystyle\sum_{r=1}^{n-1} \cos^2\left ( \dfrac{r\pi}{n} \right )=? $$
    Solution

    As we know that
    $$\cos 2 A=2 \cos ^{2} A-1$$
    $$\cos ^{2} A=\frac{1+\cos 2 A}{2}$$
    say , $$A=\frac{\pi \pi}{n}$$
    $$\Rightarrow \sum_{r=1}^{n-1} 1+\cos 2\left(\frac{r \pi}{n}\right)=\frac{1}{2}\left[\sum_{r=1}^{n-1} \cos \frac{2 \pi \pi}{n}+\sum_{n=1}^{n-1} 1\right]$$
    $$\Rightarrow \frac{1}{2}\left[\cos \frac{2 \pi}{n}+\cos \frac{4 \pi}{n}+\ldots+\cos \frac{2(n-1)}{n} \pi+(n-1)\right]$$

    As we know that
    $$\cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\cdots+\cos (\alpha+(n-1) \beta)=\frac{\sin \left(\frac{n \beta}{2}\right)}{\sin \frac{\beta}{2}} \cdot \cos \left(\frac{2 \alpha+(n-1) \beta}{2}\right) \\$$
    $$= \frac{1}{2}\left[\frac{\sin \left(\frac{(n-1)  \pi}{n}\right)}{\sin \left(\frac{\pi}{n}\right)} \cdot \cos \left(\frac{\frac{4\pi}{n}+(n-2) \frac{2 \pi}{n}}{2}\right)+n-1\right]$$

    $$= \frac{1}{2}\left[\frac{-\sin \left(\frac{n-1}{n} \pi\right)}{\sin \frac{\pi}{n}}+n-1\right]$$

    $$\left.= \frac{1}{2}\left[-\left\{\sin \frac{\sin \left(\pi-\frac{(n-1)}{n}\right) \pi}{\sin \frac{\pi}{n}}\right\}\right\}+n-1\right]$$

    $$= \frac{1}{2}[-\frac{sin\frac{\pi}{n}}{sin\frac{\pi}{n}}+n-1]$$

    $$= \frac{1}{2}(-1+n-1)=\frac{n-2}{2}$$
    Hence, $$(B)$$ is the correct option.


  • Question 5
    1 / -0
    Consider the curve $$x=1-{ 3t }^{ 2 },y=t-{ 3t }^{ 3 }$$.
    If a tangent at point $$(1-{ 3t }^{ 2 },t-{ 3t }^{ 3 })$$ inclined at an angel $$\theta $$ to the positive x-axis and another tangent at point P(-2,2) cuts the curve angels at Q.
    The value of $$tan\theta +sec\theta $$ is equal to
    Solution

  • Question 6
    1 / -0
    If $$\cos \theta = \dfrac{\cos \alpha - \cos \beta}{1 - \cos \alpha \cdot \cos \beta}$$ then $$\tan \left(\dfrac{\theta}{2}\right)$$ is _____
    Solution

  • Question 7
    1 / -0
    The value of $$\sum _{ r=1 }^{ 10 }{ \cos ^{ 3 }{ \frac { r\pi  }{ 3 }  }  } =$$?
    Solution

  • Question 8
    1 / -0
    $$\dfrac { \tan\theta  }{ 1-\cot\theta  } +\dfrac { \cot\theta  }{ 1-\tan\theta  } $$ is equal to 
    Solution

  • Question 9
    1 / -0
    For $$-\frac { \pi  }{ 2 } <\theta <\frac { \pi  }{ 2 } ,\frac { \sin { \theta  } +\sin { 2\theta  }  }{ 1+\cos { \theta  } +\cos { 2\theta  }  } $$ lies in the interval
    Solution

  • Question 10
    1 / -0
    $$ \operatorname{Tan}\left[\frac{1}{2} \sin ^{-1}\left(\frac{2 a}{1+a^{2}}\right)+\frac{1}{2} \cos ^{-1}\left(\frac{1-a^{2}}{1+a^{2}}\right)\right]= $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now