Self Studies

Trigonometric F...

TIME LEFT -
  • Question 1
    1 / -0

    If $$ X\sin { \left( { 90 }^{ \circ  }-\theta  \right) \cot { \left( { 90 }^{ \circ  }-\theta  \right)  }  } =\cos { \left( { 9 }0^{ \circ  }-\theta  \right)  } $$, then x =

  • Question 2
    1 / -0

    The value of $$\operatorname { \sec } ^ { 2 } A \operatorname { \tan } ^ { 2 } B - \tan ^ { 2 } A \operatorname { \sec } ^ { 2 } B $$ is

  • Question 3
    1 / -0

    $$\dfrac{\cos(90-A)\sin(90-A)}{\tan (90-A)}$$=

  • Question 4
    1 / -0

    Which of the following is the principal value of $$\cos { ^{ -1 }\left( \dfrac { -1 }{ 2 }  \right)  } $$?

  • Question 5
    1 / -0

    If $$cos x=b$$, then for what b do the roots of the equation form an AP ?

  • Question 6
    1 / -0

    What is the value of $$\cfrac{\tan{A}-\sin{A}}{\sin^3{A}}$$?

  • Question 7
    1 / -0

    The range of the function $$f(x)=\left (\cos ^2x+4\sec ^2x\right )$$ is

  • Question 8
    1 / -0

    The principle solution of equation $$\cot x =  - \sqrt 3 $$ is 

  • Question 9
    1 / -0

    $$\displaystyle 1^c =?$$

  • Question 10
    1 / -0

    Let $$n$$ be a positive integer such that
    $$\displaystyle \sin(\frac{\pi}{2^{n}})+\cos(\frac{\pi}{2^{n}})=\frac{\sqrt{n}}{2}$$ 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now