Self Studies

Trigonometric Functions Test -5

Result Self Studies

Trigonometric Functions Test -5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    In a triangle ABC right angled at C, tan A and tan B satisfy the equation

    Solution

    Using the given triangle we have tan A = a/b and tan B = b/a Also we have tan A . tan B = 1 and tan A + tan B = a/b + b /a = ( a2 + b2 )/ab = c2 / ab . Hence x = tan A and x = tan B are two roots of the given quadratic equation.

  • Question 2
    1 / -0
    What is $$\tan ( 360^o - A)$$?
    Solution
    As $$360 ^{°} - A$$ lies in fourth quadrant and $$\tan $$  is negative in fourth quadrant

    $$\Rightarrow \tan (360^{°} - A) =-\tan  A$$
  • Question 3
    1 / -0
    Value of $$\theta (0 < \theta < 360^o )$$ which satisfy the equation $$ \text{cosec }\theta +2 =0$$ is:
    Solution
    Given: $$ \text{cosec }\theta +2 =0$$

    $$\Rightarrow \sin \theta =-\dfrac {1}{2}$$

    $$\Rightarrow \theta =\left (\pi +\dfrac {\pi} {6}\right), $$ $$\left(2\pi - \dfrac {\pi} {6}\right)$$

    $$\Rightarrow \theta=\dfrac{7\pi}{6},\dfrac{11\pi}{6}$$

    $$\Rightarrow \theta =210^{°},\,330^{°}$$
  • Question 4
    1 / -0
    Let [x] be the greatest integar function. Then the equation sinx = [1+ sinx] + [1 - cosx] has 
    Solution
    Here,$$\sin { x } =[1+\sin { x } ]+[1-\cos { x } ]\\ \therefore \sin { x } =2+[\sin { x } ]+[-\cos { x } ]$$
    Plotting graphs at certain intervals,it is concluded that no point exist which satisfies the equation.
    $$\therefore$$ No solution for $$x\epsilon R$$
  • Question 5
    1 / -0
    If $${\tan ^2}\theta  = 2\,{\tan ^2}\phi  + 1$$, then the value of $$\cos \,2\theta  + {\sin ^2}\phi \,is$$ is
    Solution
    $${\tan ^2}\theta  = 2{\tan ^2}\phi  + 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \left( 1 \right)$$
    $$\cos 2\theta  = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$$
    $$\dfrac{{1 - \left( {2{{\tan }^2}\phi  + 1} \right)}}{{1 + {{\tan }^2}\theta }}$$
    $$\dfrac{{ - 2{{\tan }^2}\phi }}{{1 + \left( {2{{\tan }^2}\phi  + 1} \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,by\,\left( 1 \right)$$
    $$\dfrac{{ - 2{{\tan }^2}\phi }}{{2{{\sec }^2}\phi }}$$
    $$ - {\sin ^2}\phi $$
    $$\cos 2\theta  + {\sin ^2}\phi  = 0$$
  • Question 6
    1 / -0
    If $$(1 - \cos A)/2 = x$$, then the value of $$x$$ is
    Solution
    $${\textbf{Step 1: Solve the given problem using the rules}}{\textbf{.}}$$
                    $$x = \dfrac{{1 - \cos A}}{2}$$
                    $$ \Rightarrow 1 - \cos A = 2{\sin ^2}\dfrac{A}{2}$$    $$\boldsymbol{\mathbf{\left[ {\because \cos A = 1 - 2{{\sin }^2}\dfrac{A}{2}} \right]}}$$
                    $$ \Rightarrow \dfrac{{1 - \cos A}}{2} = {\sin ^2}\dfrac{A}{2}$$
                    $$ \Rightarrow x = {\sin ^2}\dfrac{A}{2}$$
    $${\textbf{Hence, the value of }}\mathbf{x}{\textbf{ is si}}{{\textbf{n}}^2}\mathbf{\dfrac{A}{2}. }$$
  • Question 7
    1 / -0
    The solution set of the equation $$4\sin \theta \cos \theta  - 2\cos \theta  - 2\sqrt 3 \sin \theta  + \sqrt 3  = 0$$ in the interval $$(0,2\pi )$$ is-
    Solution
    $$\begin{array}{l}4\sin \theta cos\theta  - 2cos\theta  - 2\sqrt {3\sin \theta }  + \sqrt 3  = 0\\ = 2\cos \theta (2\sin \theta  - 1) - \sqrt 3 \left( {2\sin \theta  - 1} \right) = 0\\ = (2\cos \theta  - \sqrt 3 )(2\sin \theta  - 1) = 0\\ = 2\cos \theta  - \sqrt 3  = 0\\ = \cos \theta  = \frac{{\sqrt 3 }}{2}\end{array}$$ $$ = \theta  = \frac{\pi }{6},\frac{{11\pi }}{6}$$
    Same as,
    $$\begin{array}{l}2\sin \theta  = 1\\ = \sin \theta  = \frac{1}{2}\\ = \theta  = \frac{\pi }{6},\frac{{5\pi }}{6}\end{array}$$
    Therefore:-
    $$\theta  = \frac{\pi }{6},\frac{{5\pi }}{6},\frac{{11\pi }}{6}$$
  • Question 8
    1 / -0
    A minimum value of $$\sin{x}\cos{2x}$$ is-
    Solution
    $$\cos x\cos 2x=2\sin x\sin 2x\implies \cos x=3\cos 3x\implies \sin x=\pm\displaystyle \frac{1}{\sqrt{6}}\implies$$ the minimum value of $$ \sin x\cos 2x$$ is $$\displaystyle \frac{-2}{3\sqrt{6}}$$
  • Question 9
    1 / -0
    If $$\cot\left( {a + \beta } \right) = 0,$$ then $$\sin\left( {a + 2\beta } \right)$$ can be 
    Solution
    Since $$\cot(α+β) = 0 ⇒ \cot(α+β) = \cot\ 90^\circ$$
    Therefore, $$(α + β) = 90^\circ$$                         ......(1)

    Since,
    $$\sin(α+2β)$$ 
    $$= \sin[(α + β) + β ]$$
    $$= \sin[90°+ β ]$$ 
    $$=  \cos β$$
  • Question 10
    1 / -0
    Select write the most appropriate answer from the given alternative in each following questions:-
    The principal solution of tan $$x=-\sqrt{3}$$ are: 
    Solution
      $$ \tan x=-\sqrt{3}=\tan \left( -\frac{\pi }{3} \right) $$
     $$ general\,solution $$
     $$ x=n\pi -\frac{\pi }{3} $$
     $$ principal\,solution $$
     $$ for\,n=0 $$
     $$ x=-\frac{\pi }{3} $$
     $$ for\,n=1 $$
     $$ x=\frac{2\pi }{3} $$
     $$ Hence\,principal\,solution\,is:-\frac{\pi }{3}and\frac{2\pi }{3} $$

  • Question 11
    1 / -0
    The solutions of the equation $$\sin x+3\sin 2x+\sin 3x=\cos x+3\cos 2x+\cos 3x$$ in the interval $$0\le x\le 2\pi$$, are 
    Solution
      $$ \sin x+3\sin 2x+\sin 3x=\cos x+3\cos 2x+\cos 3x $$
     $$ formula\,used $$
     $$ \sin C+\sin D=2\sin \frac{C+D}{2}\cos \frac{C-D}{2} $$
     $$ \cos C+\cos D=2\cos \frac{C+D}{2}\cos \frac{C-D}{2} $$
     $$ \cos \left( -\theta  \right)=\cos \theta  $$
     $$ \Rightarrow 2\sin 2x\cos x+3\sin 2x=2\cos 2x\cos x+3\cos 2x $$
     $$ \Rightarrow \sin 2x\left[ 2\cos x+3 \right]=\cos 2x\left[ 2\cos x+3 \right] $$
     $$ \Rightarrow \sin 2x=\cos 2x $$
     $$ \Rightarrow \tan 2x=1=\tan \frac{\pi }{4} $$
     $$ \therefore 2x=n\pi +\frac{\pi }{4} $$
     $$ x=\frac{n\pi }{2}+\frac{\pi }{8} $$
     $$ 0\le x\le 2\pi  $$
     $$ \therefore \,x=\frac{\pi }{8},\frac{5\pi }{8},\frac{9\pi }{8},\frac{13\pi}8 $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now