Self Studies

Trigonometric F...

TIME LEFT -
  • Question 1
    1 / -0

    sin (180+ϕ) sin(180−ϕ) cosec2ϕ

  • Question 2
    1 / -0

    The solution of equation $$\cos^2 \theta +\sin \theta+1=0$$ lies in the interval

  • Question 3
    1 / -0

    In which quadrant does the terminal side of the angle $$250^0$$ lie?

  • Question 4
    1 / -0

    In which quadrant does the terminal side of the angle $$330^0$$ lie?

  • Question 5
    1 / -0

    The minimum value of $$ \displaystyle  \sec ^{2}\alpha + \cos ^{2}\alpha   $$ is 

  • Question 6
    1 / -0

    $$\cfrac { \tan { \theta  }  }{ \sec { \theta  } -1 } +\cfrac { \tan { \theta  }  }{ \sec { \theta  } +1 } $$ is equal to

  • Question 7
    1 / -0

    If $$\sin { \theta  } +\cos { \theta  } =p$$ and $$\tan { \theta  } +\cot { \theta  } =q$$, then $$q\left( { p }^{ 2 }-1 \right) =$$

  • Question 8
    1 / -0

    $$\cfrac { 1 }{ \sec { \theta  } -\tan { \theta  }  } $$ is equal to

  • Question 9
    1 / -0

    If $$\tan\theta +\cot\theta =2$$, then the value of $$\tan^2\theta +\cot^2\theta$$ is __________?

  • Question 10
    1 / -0

    $$\cos ^{ 4 }{ A } -\sin ^{ 4 }{ A } $$ is equal to

  • Question 11
    1 / -0

    If $$\alpha $$ and $$\beta $$ are two different solution lying between $${{ - \pi } \over 2}$$ and $${\pi  \over 2}$$ of the equation $$2{\mathop{\rm Tan}\nolimits} \theta  + {\mathop{\rm Sec}\nolimits} \theta  - 2$$ then $${\mathop{\rm Tan}\nolimits} \alpha  + {\mathop{\rm Tan}\nolimits} \beta $$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 11

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now