Self Studies

Trigonometric Functions Test -6

Result Self Studies

Trigonometric Functions Test -6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    sin (180+ϕ) sin(180−ϕ) cosec2ϕ

    Solution

    sin(180 + ϕ)(180 − ϕ) cosec2ϕ = −sinϕ. sinϕ cosec2ϕ = −sin2ϕ cosec2ϕ = −1

  • Question 2
    1 / -0
    The solution of equation $$\cos^2 \theta +\sin \theta+1=0$$ lies in the interval
    Solution
    $$cos^2 \theta + \sin   \theta + 1= 0$$
    $$\Rightarrow 1 - \sin ^2 \theta + \sin   \theta + 1 = 0$$
    $$\Rightarrow \sin ^2 \theta - \sin   \theta - 2 = 0$$
    $$\Rightarrow (\sin   \theta + 1) (\sin   \theta - 2) = 0$$
    As $$ -1 < \sin   \theta < 1$$ so $$\sin  \theta + 1 = 0$$
    $$\Rightarrow \sin   \theta = \sin  \displaystyle \frac{3 \pi}{2}$$
    $$\Rightarrow \theta = \displaystyle \frac{3\pi}{2} \varepsilon \left( \frac{5 \pi}{4}, \frac{7 \pi}{4} \right )$$
  • Question 3
    1 / -0
    In which quadrant does the terminal side of the angle $$250^0$$ lie?
    Solution
    Quadrant I: $$0˚$$ to $$90˚$$
    Quadrant II: $$90˚$$ to $$180˚$$
    Quadrant III: $$180˚$$ to $$270˚$$
    Quadrant IV: $$270˚$$ to $$360˚$$

    $$180˚ < 250˚ < 270˚$$, so the terminal side of a $$250˚$$ angle lies in quadrant III.

  • Question 4
    1 / -0
    In which quadrant does the terminal side of the angle $$330^0$$ lie?
    Solution
    Quadrant I: $$0˚$$ to $$90˚$$
    Quadrant II: $$90˚$$ to $$180˚$$
    Quadrant III: $$1800˚$$ to $$270˚$$
    Quadrant IV: $$270˚$$ to $$360˚$$

    $$270˚ < 330˚ < 360˚$$, so the terminal side of a $$330˚$$ angle lies in quadrant IV.

  • Question 5
    1 / -0
    The minimum value of $$ \displaystyle  \sec ^{2}\alpha + \cos ^{2}\alpha   $$ is 
    Solution

    Consider the given expression,

    $${{\sec }^{2}}\alpha +{{\cos }^{2}}\alpha $$

    AS it is clear that $${{\cos }^{2}}\alpha $$ and $${{\sec }^{2}}\alpha $$ are positive numbers

    So, we can apply the theorem of A.M and G.M

    A.M>=G.M

    so we have

    $$\left( \dfrac{{{\sec }^{2}}\alpha +{{\cos }^{2}}\alpha }{2} \right)=\sqrt{{{\sec }^{2}}\alpha +{{\cos }^{2}}\alpha }$$

    Or  $$ {{\sec }^{2}}\alpha +{{\cos }^{2}}\alpha =2\sqrt{{{\sec }^{2}}\alpha +{{\cos }^{2}}\alpha }=2.1 $$

     $$ {{\sec }^{2}}\alpha +{{\cos }^{2}}\alpha =2 $$


    So, minimum value of $${{\sec }^{2}}\alpha +{{\cos }^{2}}\alpha $$ is 2.

  • Question 6
    1 / -0
    $$\cfrac { \tan { \theta  }  }{ \sec { \theta  } -1 } +\cfrac { \tan { \theta  }  }{ \sec { \theta  } +1 } $$ is equal to
    Solution
    $$\cfrac { \tan { \theta  } \left( \sec { \theta  } +1+\sec { \theta  } -1 \right)  }{ \sec ^{ 2 }{ \theta  } -1 } =\cfrac { 2\tan { \theta  } \sec { \theta  }  }{ \sec ^{ 2 }{ \theta  }-1  } =\cfrac { 2\tan { \theta  } \sec { \theta  }  }{ \tan ^{ 2 }{ \theta  }  } $$
    $$\Rightarrow \cfrac { 2\sec { \theta  }  }{ \tan { \theta  }  } =2\cfrac { 1 }{ \cos { \theta  } .\cfrac { \sin { \theta  }  }{ \cos { \theta  }  }  } =2\text{cosec} { \theta  } $$
  • Question 7
    1 / -0
    If $$\sin { \theta  } +\cos { \theta  } =p$$ and $$\tan { \theta  } +\cot { \theta  } =q$$, then $$q\left( { p }^{ 2 }-1 \right) =$$
    Solution
    Let $$\left( \sin { \theta  } +\cos { \theta  }  \right) ^{ 2 }=p^{ 2 }$$

    $$\Rightarrow 1+\sin { 2\theta  } ={ p }^{ 2 }$$

    Also $$\tan { \theta  } +\dfrac { 1 }{ \tan { \theta  }  } =q$$

    $$\Rightarrow \dfrac { \tan ^{ 2 }{ \theta  } +1 }{ 2\tan { \theta  }  } =\dfrac { q }{ 2 } $$

    $$\csc { 2\theta  } =\dfrac { q }{ 2 } $$

    $$\Rightarrow \dfrac { 1 }{ { p }^{ 2 }-1 } =\dfrac { q }{ 2 }$$

    $$ \Rightarrow \left( { p }^{ 2 }-1 \right) q\ =\ 2 $$
  • Question 8
    1 / -0
    $$\cfrac { 1 }{ \sec { \theta  } -\tan { \theta  }  } $$ is equal to
    Solution
    $$\cfrac { 1 }{ \sec { \theta  } -\tan { \theta  }  } \times \cfrac { \sec { \theta  } +\tan { \theta  }  }{ \sec { \theta  } +\tan { \theta  }  } =\cfrac { \sec { \theta  } -\tan { \theta  }  }{ \sin ^{ 2 }{ \theta  } -\tan ^{ 2 }{ \theta  }  } =\sec { \theta  } +\tan { \theta  } \quad \quad $$
  • Question 9
    1 / -0
    If $$\tan\theta +\cot\theta =2$$, then the value of $$\tan^2\theta +\cot^2\theta$$ is __________?
    Solution
    Given, $$\tan \theta+\cot \theta=2$$

    Squaring both sides, we get

    $$(\tan \theta+\cot \theta)^2=2^2$$

    $$\Rightarrow \tan^2\theta+\cot^2\theta+2=4$$    .....Since $$\tan\theta\times \cot \theta=\tan \theta\times \dfrac {1}{\tan \theta}=1$$

    $$\Rightarrow \tan^2\theta+\cot^2\theta=2$$
  • Question 10
    1 / -0
    $$\cos ^{ 4 }{ A } -\sin ^{ 4 }{ A } $$ is equal to
    Solution
    $$\cos ^{ 4 }{ A } -\sin ^{ 4 }{ A } =\left( \cos ^{ 2 }{ A } -\sin ^{ 2 }{ A }  \right) \left( \cos ^{ 2 }{ A } +\sin ^{ 2 }{ A }  \right) =\cos { 2A } $$
  • Question 11
    1 / -0
    If $$\alpha $$ and $$\beta $$ are two different solution lying between $${{ - \pi } \over 2}$$ and $${\pi  \over 2}$$ of the equation $$2{\mathop{\rm Tan}\nolimits} \theta  + {\mathop{\rm Sec}\nolimits} \theta  - 2$$ then $${\mathop{\rm Tan}\nolimits} \alpha  + {\mathop{\rm Tan}\nolimits} \beta $$ is
    Solution
    $$2\tan { \theta  } +\sec { \theta  } -2=0\\ \cfrac { 2\sin { \theta  }  }{ \cos { \theta  }  } +\cfrac { 1 }{ \cos { \theta  }  } -2=0\\ 2\sin { \theta  } -2\cos { \theta  } +1=0\\ 2(\sin { \theta  } -\cos { \theta  } )=-1\\ \sin { \theta  } -\cos { \theta  } =\cfrac { -1 }{ 2 } \\ { (\sin { \theta  } -\cos { \theta  } ) }^{ 2 }={ (\cfrac { -1 }{ 2 } ) }^{ 2 }\\ { \sin { ^{ 2 }\theta  }  }+\cos { ^{ 2 }\theta  } -2\sin { \theta  } \cos { \theta  } =\cfrac { 1 }{ 4 } \\ 1-2\sin { \theta  } \cos { \theta  } =\cfrac { 1 }{ 4 } \\ 1-\sin { 2\theta  } =\cfrac { 1 }{ 4 } \\ \Rightarrow \sin { 2\theta  } =\cfrac { 3 }{ 4 } \\ \Rightarrow 2\theta =\sin ^{ -1 }{ \cfrac { 3 }{ 4 }  } $$
    It can be $$ \pi \quad \& \quad -\pi $$
    $$ \therefore \tan { \pi  } +\tan { (-\pi ) } \\ =0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now