Self Studies

Trigonometric Functions Test 9

Result Self Studies

Trigonometric Functions Test 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$9\tan^{2}\theta - 9 \sec^{2}\theta =$$
    Solution
    $$\displaystyle 9tan^2\theta-9sec^2\theta=-9(sec^2\theta-tan^2\theta)$$
                                 $$\displaystyle =-9(1)$$
                                 $$=-9$$
    Option D is correct.
  • Question 2
    1 / -0
    If $$\sin( \pi \cos \theta) = \cos (\pi \sin \theta)$$, then which of the following is correct.
    Solution
    Given :
    $$\sin(\pi \cos \theta)=\cos(\pi \sin \theta)$$
    $$\implies \sin(\pi \cos \theta)=\sin\left(\frac{\pi}{2}-\pi \sin \theta\right)$$ ......... $$[\because \cos x=\sin(90^{o}-x)]$$
    $$\implies \pi \cos \theta=\dfrac{\pi}{2}- \pi \sin \theta$$
    $$\implies \cos \theta=\dfrac{1}{2}-\sin \theta$$ ...... [Divided by $$\pi$$]
    $$\implies \cos \theta + \sin \theta =\dfrac{1}{2}$$
    $$\implies \dfrac{\sqrt{2}}{\sqrt{2}}(\cos \theta + \sin \theta) =\dfrac{1}{2}$$
    $$\implies \sqrt{2} \left(\dfrac{1}{\sqrt{2}}\cos \theta + \dfrac{1}{\sqrt{2}}\sin \theta\right) =\dfrac{1}{2}$$
    $$\implies \sqrt{2} \left(\cos\left(\dfrac{\pi}{4}\right)\cos \theta + \sin\left(\dfrac{\pi}{4}\right)\sin \theta\right) =\dfrac{1}{2}$$
    $$\implies \sqrt{2}\cos\left(\theta - \dfrac{\pi}{4}\right)=\dfrac{1}{2}$$
    $$\implies \cos\left(\theta - \dfrac{\pi}{4}\right)=\dfrac{1}{2\sqrt{2}}$$
    Hence, option C is correct.
  • Question 3
    1 / -0
    The number of principal solutions of $$\tan 2\theta = 1$$ is
    Solution
    Let $$y=\tan 2\theta$$

    $$\tan 2\theta = 1 $$

    $$\implies 2\theta={\tan^{-1}(1)}$$

    $$\implies 2\theta=\dfrac{\pi}{4}+{k\pi},$$ where $$k$$ is a positive integer
    Now,

    for $$k=0\Rightarrow \theta=\dfrac{\pi}{4}$$ and for $$k=1\Rightarrow \theta=\dfrac{5\pi}{4}$$

    $$0\leq \dfrac{\pi}{4} \leq 2\pi$$ and $$0\leq \dfrac{5\pi}{4} \leq 2\pi$$

    $$\therefore 2\theta=\dfrac{\pi}{4}, \dfrac{5\pi}{4}$$

    $$\implies \theta=\dfrac{\pi}{8},\dfrac{5\pi}{8}$$

    Hence, the required principal solutions are $$\dfrac{\pi}{8}$$ and $$\dfrac{5\pi}{8}$$.
  • Question 4
    1 / -0
    The equation $$ \sqrt {3} \sin x + \cos x = 4 $$ has 
    Solution
    We know that,

    $$ - \sqrt {a^2 + b^2} \le a \cos \theta + b \sin \theta \le \sqrt {a^2 + b^2}$$

    $$ \therefore - \sqrt {3 + 1} \le \sqrt{3} \sin x + \cos x \le \sqrt {3 + 1}$$

    $$ \Rightarrow -2 \le \sqrt{3} \sin x + \cos x \le {2} $$

    But $$ \sqrt {3} \sin x + \cos x = 4 $$

    Hence, given equation has no solution.
  • Question 5
    1 / -0
    Principal solutions of the equation $$\sin { 2x } +\cos { 2x } =0$$, where $$\pi< x< 2\pi$$ are
    Solution
    Given : $$\pi< x< 2\pi$$
    $$\implies 2\pi<2x<4\pi$$ ...... $$(i)$$
    Also, $$\sin 2x+\cos 2x=0$$ ..... $$(ii)$$ [Given]
    $$\implies \sin 2x=-\cos 2x$$
    $$\implies \dfrac{\sin 2x}{\cos 2x}=-1$$
    $$\implies \tan 2x=-1$$
    $$\implies 2x=\tan^{-1}(-1)$$
    Now, we know that 
    $$\tan \dfrac{3\pi}{4}=\tan \dfrac{7\pi}{4}=\tan \dfrac{11\pi}{4}=...... =\tan \dfrac{(4n+3)\pi}{4}=-1$$
    So, the possible values for $$2x$$ are $$\dfrac{3\pi}{4}, \dfrac{7\pi}{4}, \dfrac{11\pi}{4},.....,\dfrac{(4n+3)\pi}{4}$$
    But, from $$(i)$$ we get the values for $$2x$$ as $$\dfrac{11\pi}{4}$$ and $$\dfrac{15 \pi}{4}$$.
    $$\therefore 2x=\dfrac{11\pi}{4}, \dfrac{15\pi}{4}$$
    $$\implies x=\dfrac{11\pi}{8}, \dfrac{15\pi}{8}$$
    $$\therefore$$ Principal solutions for $$(ii)$$ are $$\dfrac{11\pi}{8}$$ and $$\dfrac{15\pi}{8}$$.
  • Question 6
    1 / -0
    The number of solutions $$\left[ \cos { x }  \right] +\left| \sin { x }  \right| =1$$ in $$\pi \le x < 3\pi $$, where $$[x]$$ is the greatest integer not exceeding $$x$$ is
    Solution
    We first plotted the graph of $$\sin { x } $$ and $$\cos { x } $$
    Then using the properties of integral part and mode function we get the graph of $$\left[ \cos { x }  \right] $$ and $$\left| \sin { x }  \right| $$
    Clearly they collectively give $$1$$ at $$x=\dfrac { 3\pi  }{ 2 } ,2\pi ,\dfrac { 5\pi  }{ 2 } $$ in the interval $$\left[ \pi ,3\pi  \right] $$
    So option $$A$$ is correct 

  • Question 7
    1 / -0
    Principal solutions of the equation $$\sin 2x+\cos2x=0$$, where $$\pi < x < 2\pi$$ are
    Solution
    $$\sin { 2x } +\cos { 2x } =0$$
    $$\sin { 2x } =-\cos { 2x } $$
    $$\cfrac { \sin { 2x }  }{ \cos { 2x }  } =-1$$
    $$\tan { 2x } =-1\longrightarrow 1$$
    $$\pi <x<2\pi $$
    $$2\pi <2x<4\pi $$
    $$\tan { x } $$ is negative in second and fourth quadrant
    $$\therefore \tan { \cfrac { 3\pi  }{ 4 } }=\tan { \cfrac { 7\pi  }{ 4 }  } =.....=\tan { \left( 4n-1 \right)  } \cfrac { \pi  }{ 4 } =-1 $$
    $$n=1,2,3,....$$
    But $$2\pi <2x<4\pi $$
    $$\therefore 2x=\cfrac { 11\pi  }{ 4 } $$ or $$2x=\cfrac { 15\pi  }{ 4 } $$
    $$x=\cfrac { 11\pi  }{ 8 } $$ or $$\cfrac { 15\pi  }{ 8 } $$
  • Question 8
    1 / -0
    $$\displaystyle \left ( 1+\cot^{2}\theta \right )\left ( 1-\cos\theta \right )\left ( 1+\cos\theta \right )=$$
    Solution
    We have,
    $$\displaystyle \left ( 1+\cot^{2}\theta \right )\left ( 1-\cos\theta \right )\left ( 1+\cos\theta \right )$$

    $$\Rightarrow \displaystyle \left ( 1+\cot^{2}\theta \right )\left ( 1-\cos^2\theta \right )$$                 $$\because\ a^2-b^2=(a+b)(a-b)$$

    $$\Rightarrow \displaystyle \left ( 1+\cot^{2}\theta \right )\left ( \sin^2\theta \right )$$                 $$\because\ \sin^2\theta=1-\cos^2\theta$$

    $$\Rightarrow \displaystyle \left ( \csc^{2}\theta \right )\left ( \sin^2\theta \right )$$                     $$\because\ 1+\cot^2\theta=\csc^2\theta$$

    $$\Rightarrow \displaystyle \dfrac{1}{\sin^2\theta}\times \sin^2\theta$$                           $$\because\ \csc^2\theta=\dfrac{1}{\sin^2\theta}$$

    $$\Rightarrow 1$$

    $$\Rightarrow \displaystyle \sec^2\theta-\tan^2\theta$$                           $$\because\ \sec^2\theta-\tan^2\theta=1$$

    Hence, this is the answer.
  • Question 9
    1 / -0
    The number of roots of the equation $$x + 2\tan x = \dfrac {\pi}{2}$$ in the interval $$[0, 2\pi]$$ is
    Solution
    Given, $$x+2 \tan x=\dfrac{\pi}{2}$$
    This equation also can be written as:
    $$\tan x= \dfrac{\pi}{4}-\dfrac{x}{2}$$
    plot the graph b/w $$y=\tan x  \text{  and  } y= \dfrac{\pi}{4}-\dfrac{x}{2} $$
    straight line cuts $$y=\tan x\,,3$$ times in the interval $$[0,2\pi]$$.
    $$\therefore$$ no. of roots=$$3$$.

  • Question 10
    1 / -0
    If $$0\le x\le 2\pi $$, then the number of solutions of the equation $$\sin ^{ 6 }{ x } +\cos ^{ 6 }{ x } =1$$ is
    Solution
    Given equation is $$\sin ^{ 8 }{ x } +\cos ^{ 6 }{ x } =1$$
    $$\Rightarrow \sin ^{ 8 }{ x } +{ \left( 1-\sin ^{ 2 }{ x }  \right)  }^{ 3 }=1$$
    $$\Rightarrow \sin ^{ 8 }{ x } -\sin ^{ 6 }{ x } +3\sin ^{ 4 }{ x } -3\sin ^{ 2 }{ x } =0$$
    $$\Rightarrow \sin ^{ 6 }{ x } \left( \sin ^{ 2 }{ x } -1 \right) +3\sin ^{ 2 }{ x } \left( \sin ^{ 2 }{ x } -1 \right) =0$$
    $$\Rightarrow \left( \sin ^{ 6 }{ x } +3\sin ^{ 2 }{ x }  \right) \left( \sin ^{ 2 }{ x } -1 \right) =0$$
    $$\Rightarrow \sin ^{ 2 }{ x } \left( \sin ^{ 4 }{ x } +3 \right) \left( \sin ^{ 2 }{ x } -1 \right) =0$$
    $$\Rightarrow \left( \sin ^{ 4 }{ x } +3 \right) \left[ \sin ^{ 2 }{ x } \left( \sin { x } -1 \right) \left( \sin { x } +1 \right)  \right] =0$$
    $$\Rightarrow \sin ^{ 2 }{ x } \left( \sin { x } -1 \right) \left( \sin { x } +1 \right) =0$$                   $$\left[ \because \sin ^{ 4 }{ x } +3\neq 0 \right] $$
    From above, it is clear that it has three roots in $$\left[ 0,2\pi  \right] $$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now