Self Studies

Principle of Ma...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$a, b, c$$ and $$d$$ be any four real numbers. Then, $$a^n+b^n=c^n+d^n$$ holds for any natural number $$n$$, if


    (This question has some ambiguity, but appeared in WBJEE 2015 exam).

  • Question 2
    1 / -0

    For any $$+$$ve integer $$n, n^3 + 2n$$ is always divisible by

  • Question 3
    1 / -0

    The last digit in $$\displaystyle { 7 }^{ 300 }$$ is:

  • Question 4
    1 / -0

    For any integer $$n\ge 1$$, the sum $$\displaystyle\sum _{ k=1 }^{ n }{ k\left( k+2 \right)  } $$ is equal to

  • Question 5
    1 / -0

    Let $$A = \begin{pmatrix}1 & 1 & 1\\ 0 & 1 & 1\\ 0 & 0 & 1\end{pmatrix}$$. Then for positive integer $$n, A^{n}$$ is

  • Question 6
    1 / -0

    The integer next above $$(\sqrt{3}+1)^{2n}$$ contains

  • Question 7
    1 / -0

    If $${a_{1,}}{a_{2,}}{a_{3,}}........{a_{2n + 1}}$$ are in A.P. then$$\frac{{{a_{2n + 1}} - {a_1}}}{{{a_{2n + 1}} + {a_1}}} + \frac{{{a_{2n + 1}} - {a_2}}}{{{a_{2n + 1}} + {a_2}}} + ...... + \frac{{{a_{2n + 1}} - {a_n}}}{{{a_{2n + 1}} + {a_n}}}$$ 

  • Question 8
    1 / -0

    $$33!$$ is divisble by $${2^n}$$, then $$n$$=......

  • Question 9
    1 / -0

    Let $$P(n)$$ be the statement $$2^{n}<n!$$ where $$n$$ is a natural number, then $$P(n)$$ is true for:

  • Question 10
    1 / -0

    For all positive integrals $$10^{n}+3^{4n+2}+8$$ is divisible by

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now