Self Studies

Principle of Mathematical Induction Test - 18

Result Self Studies

Principle of Mathematical Induction Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$a, b, c$$ and $$d$$ be any four real numbers. Then, $$a^n+b^n=c^n+d^n$$ holds for any natural number $$n$$, if

    (This question has some ambiguity, but appeared in WBJEE 2015 exam).
    Solution
    Option A
    $$a+b=c+d$$            ....Given
    Squaring on both sides, we get
    $$(a+b)^2 = (c+d)^2$$
    $$a^2 +b^2 + 2ab = c^2+d^2+2cd$$
    $$\therefore a^n+b^n \neq c^n+d^n$$


    Option B
    $$a-b=c-d$$           ...Given
    Squaring on both sides, we get
    $$(a-b)^2 = (c-d)^2$$
    $$a^2 +b^2 - 2ab = c^2+d^2-2cd$$
    $$\therefore a^n+b^n \neq c^n+d^n$$


    Option C
    $$a+b=c+d$$              ...(i)
    $$a^2+b^2 = c^2+d^2$$    ....(ii)
    Consider $$(a+b)^2 = (c+d)^2$$
    $$a^2 +b^2 + 2ab = c^2+d^2+2cd$$
    $$\Rightarrow 2ab = 2cd$$         ...from (ii) 
    $$\Rightarrow ab=cd$$
    So, $$a^n+b^n \neq c^n+d^n$$ for all $$n  \epsilon N$$.


    Option D 
    $$a-b=c-d$$              ...(i)
    $$a^2-b^2 = c^2-d^2$$    ....(ii)
    Consider $$a^2-b^2 = c^2-d^2$$
    $$\Rightarrow (a-b)(a+b) = (c-d)(c+d)$$
    $$\Rightarrow a+b = c+d$$         ...from (i)       ....(iii)
    Adding eq(i) and (ii), we get
    $$2a=2c$$
    $$\Rightarrow a=c$$
    $$\therefore b=d$$          ...from (iii)
    So, $$a^n+b^n=c^n+d^n$$ for all $$n  \epsilon N$$.
  • Question 2
    1 / -0
    For any $$+$$ve integer $$n, n^3 + 2n$$ is always divisible by
    Solution
    Let $$P(n)=n^3+2n$$
    Now $$P(1)=1^3+2(1)=3$$, divisible by $$3$$
    $$P(2)=2^3+2(4)=12$$, divisible by $$3$$ and $$6$$
    $$P(3)=3^3+2(3)=33$$, divisible by $$3$$


    Hence $$n^3+2n$$ is divisible by $$3$$
  • Question 3
    1 / -0
    The last digit in $$\displaystyle { 7 }^{ 300 }$$ is:
    Solution
    We go on writing the units digit in the first few terms for the expansion of $$7$$.
    $$7^1 \rightarrow 7$$
    $$7^2 \rightarrow 9$$
    $$7^3 \rightarrow 3$$
    $$7^4 \rightarrow 1$$
    $$7^5 \rightarrow 7$$
    And the terms will keep on repeating.
    Thus, the trend repeats itself in multiples of $$4$$.
    Since $$300$$ is divisible by $$4$$, the units digit of $$7^{300}$$ would be $$1.$$
  • Question 4
    1 / -0
    For any integer $$n\ge 1$$, the sum $$\displaystyle\sum _{ k=1 }^{ n }{ k\left( k+2 \right)  } $$ is equal to
    Solution
    Now, $$\displaystyle\sum _{ k=1 }^{ n }{ k\left( k+2 \right)  } $$
    $$=\displaystyle\sum _{ k=1 }^{ n }{ { k }^{ 2 }+2k } =\displaystyle\sum _{ k=1 }^{ n }{ { k }^{ 2 } } +2k\displaystyle\sum _{ k=1 }^{ n }{ k } $$
    $$=\dfrac { n\left( n+1 \right) \left( 2n+1 \right)  }{ 6 } +\dfrac { 2n\left( n+1 \right)  }{ 2 } $$
    $$=n\left( n+1 \right) \dfrac { 2n+1 }{ 6 } +1$$
    $$=\dfrac { n\left( n+1 \right) \left( 2n+7 \right)  }{ 6 } $$
  • Question 5
    1 / -0
    Let $$A = \begin{pmatrix}1 & 1 & 1\\ 0 & 1 & 1\\ 0 & 0 & 1\end{pmatrix}$$. Then for positive integer $$n, A^{n}$$ is
    Solution
    $$A= \begin{pmatrix}
     1&  1& 1\\
     0&  1& 1\\
     0&  0&1
    \end{pmatrix}$$
    $$A^{2}= \begin{pmatrix}
     1&  2&3 \\
     0&  1&2 \\
     0& 0&1
    \end{pmatrix}$$
    $$A^{3}= \begin{pmatrix}
     1&  3&6 \\
     0&  1&3 \\
     0& 0&1
    \end{pmatrix}$$
    There using mathematical induction we get that
    $$A^{n}= \begin{pmatrix}
     1&  n& \frac{n(n+1)}{2} \\
     0&  1&n \\
     0& 0&1
    \end{pmatrix}$$
  • Question 6
    1 / -0
    The integer next above $$(\sqrt{3}+1)^{2n}$$ contains
    Solution
    We have,

    $$(\sqrt{3}+1)^{2n}$$

    $$=$$ $$\{(\sqrt{3}+1)^{2}\}^n$$

    $$=(4+2\sqrt{3})^n$$

    $$=2^n(2+\sqrt{3})^n$$.

    So it is clear that the integer next above the given number contains $$2^n$$ as a factor.
  • Question 7
    1 / -0
    If $${a_{1,}}{a_{2,}}{a_{3,}}........{a_{2n + 1}}$$ are in A.P. then$$\frac{{{a_{2n + 1}} - {a_1}}}{{{a_{2n + 1}} + {a_1}}} + \frac{{{a_{2n + 1}} - {a_2}}}{{{a_{2n + 1}} + {a_2}}} + ...... + \frac{{{a_{2n + 1}} - {a_n}}}{{{a_{2n + 1}} + {a_n}}}$$ 
    Solution
    $${a}_{1},{a}_{2},...,{a}_{2n+1}$$ are in A.P
    $$\Rightarrow\,{a}_{2n+1}={a}_{1}+2nd$$
    $${a}_{2n}={a}_{1}+\left(2n-1\right)d$$
    $$...{a}_{2}={a}_{1}+d$$
    $$\Rightarrow\,{a}_{2n+1}-{a}_{1}=2{a}_{1}+2nd$$
    $${a}_{2n}-{a}_{2}=2{a}_{1}+2nd$$ and so on
    Consider $$\dfrac{{a}_{2n+1}-{a}_{1}}{{a}_{2n+1}+{a}_{1}}+\dfrac{{a}_{2n}-{a}_{2}}{{a}_{2n}+{a}_{2}}+\dfrac{{a}_{2n-1}-{a}_{3}}{{a}_{2n-1}+{a}_{3}}+...+\dfrac{{a}_{n+2}-{a}_{n}}{{a}_{n+2}+{a}_{n}}$$
    $$=\dfrac{2nd}{2{a}_{1}+2nd}+\dfrac{\left(2n-2\right)d}{2{a}_{1}+2nd}+...+\dfrac{2d}{2{a}_{1}+2nd}$$
    $$=\dfrac{nd}{{a}_{1}+nd}+\dfrac{\left(n-1\right)d}{{a}_{1}+nd}+...+\dfrac{d}{{a}_{1}+nd}$$
    $$=\dfrac{d\left(1+2+3+...+n\right)}{{a}_{1}+nd}$$
    $$=\dfrac{d\dfrac{n\left(n+1\right)}{2}}{{a}_{1}+nd}$$
    $$=\dfrac{n\left(n+1\right)d}{2{a}_{n+1}}$$
    $$=\dfrac{n\left(n+1\right)\left({a}_{2}-{a}_{1}\right)}{2{a}_{n+1}}$$
  • Question 8
    1 / -0
    $$33!$$ is divisble by $${2^n}$$, then $$n$$=......
    Solution
    Given 

    $$33!$$

    $$\implies 33\times 32 \times 31\times...\times 4\times 2\times 1$$

    Considering the factors which contain 2

    $$\implies 32\times 30\times 28\times 26\times 24\times 22\times 20\times 18 \times 16\times 14\times 12\times 10\times 8\times 6\times 4\times 2$$

    $$\implies 2^5\times 2^1 \times 2^2 \times 2^1 \times 2^3 \times 2^1 \times 2^2 \times 2^1 \times 2^4 \times 2 \times 2^2 \times 2^1 \times 2^3 \times 2^1 \times 2^2 \times 2^1$$

    $$\implies 2^{31}$$

    $$\therefore n=31$$

  • Question 9
    1 / -0
    Let $$P(n)$$ be the statement $$2^{n}<n!$$ where $$n$$ is a natural number, then $$P(n)$$ is true for:
    Solution

    We have,

    $$P\left( n \right)$$ be the statement $${{2}^{n}}<n!$$

    Where $$n$$ is a natural number

    Then,

    Put $$n=1,2,3....$$

    So,

    $$P\left( 1 \right)\,$$ be the statement of $${{2}^{1}}<1!=2<1\,\,\,\left( \text{It}\,\text{is}\,\text{wrong} \right)$$

    $$P\left( 2 \right)$$  be the statement of $${{2}^{2}}<2!=4<2\,\,\left( \text{It}\,\text{is}\,\text{wrong} \right)$$

    $$P\left( 3 \right)$$  be the statement of $${{2}^{3}}<3!=8<6\,\,\left( \text{It}\,\text{is}\,\text{wrong} \right)$$


    But,

    $$P\left( 4 \right)$$  be the statement of $${{2}^{4}}<4!=16<24\,\,\left( \text{It}\,\text{is}\,\text{right} \right)$$

    Similarly,

    $$P\left( 5 \right),\,P\left( 6 \right)\,.......$$ So, all number $$n$$ is a natural number.


    Therefore, it is true for all $$n>3$$.


    Hence, this is the answer.

  • Question 10
    1 / -0
    For all positive integrals $$10^{n}+3^{4n+2}+8$$ is divisible by
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now