Self Studies

Complex Numbers and Quadratic Equations Test 0

Result Self Studies

Complex Numbers and Quadratic Equations Test 0
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\alpha $$ and $$\beta $$ are real then $$\left| \dfrac { \alpha +i\beta  }{ \beta +i\alpha  }  \right|=$$ 
    Solution
    We know that

    $$|\dfrac{z_{1}}{z_{2}}|$$ $$=\dfrac{|z_{1}|}{|z_{2}|}$$
    Hence

    $$|\dfrac{\alpha+i\beta}{\beta+i\alpha}|$$

    $$=\dfrac{|\alpha+i\beta|}{|\beta+i\alpha|}$$

    $$=\dfrac{\sqrt{\alpha^{2}+\beta^{2}}}{\sqrt{\beta^{2}+\alpha^{2}}}$$

    $$=1$$.
  • Question 2
    1 / -0
    If $$m_1$$, $$m_2$$, $$m_3$$ and $$m_4$$ respectively denote the moduli of the complex numbers $$1 + 4i, 3 + i, 1 – i \ and\  2 – 3i$$ then the correct order among the following is :
    Solution
    $$m_{1}=|1+4i|=\sqrt{1+16}=\sqrt{17}$$.
    $$m_{2}=|3+i|=\sqrt{9+1}=\sqrt{10}$$
    $$m_{3}=|1-i|=\sqrt{1+1}=\sqrt{2}$$
    $$m_{4}=|2-3i|=\sqrt{4+9}=\sqrt{13}$$
    Hence
    $$m_{1}>m_{4}>m_{2}>m_{3}$$
  • Question 3
    1 / -0
    The principal argument of $$z=-3+3i$$ is:
    Solution
    Given, $$z=-3+3i$$

    $$\Rightarrow z=3(-1+i)$$

    $$=3\left (\dfrac{-1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}}\right)$$

    $$=3\sqrt2\left (\cos\left (\dfrac{3\pi}{4}\right)+i\sin\left (\dfrac{3\pi}{4}\right)\right)$$

    $$=3\sqrt2e^{i\frac{3\pi}{4}}$$

    Hence, principal argument of $$z$$ is $$\dfrac{3\pi}{4}$$.
  • Question 4
    1 / -0
    Assertion (A): The principal amplitude of complex number $$x + ix$$ is $$\cfrac{\pi }{4}$$.
    Reason (R): The principal amplitude of a complex number $$x + iy$$ is $$\cfrac{\pi }{4}$$ if $$y = x$$.
    Solution
    Assertion :  $$arg(x+ix) = arg \cfrac{x}{x}$$ $$=\cfrac {\pi}{4}$$

    Reason : if $$y=x$$ then $$arg(x+iy) = \cfrac {\pi}{4}$$

    $$\therefore$$ Both Assertion and reason are true and Reason is the correct explanation of Assertion.
    Hence, option A is correct.
  • Question 5
    1 / -0
    The area of the triangle formed by the three complex numbers $$1 + i$$, $$i - 1$$ , $$2i$$ in the Argand diagram is:
    Solution
    The three vertices are $$A (1,1) , B (1,-1) $$ and $$C (0,2) $$
    Base $$AB =  2 $$ 
    Height $$ = 1 -0 = 1 $$ 
    Area $$ = \dfrac {1}{2} \times $$ Base $$ \times $$ Height 
    Area $$ = 1 $$
  • Question 6
    1 / -0
    If $$z_1$$ and $$z_2$$ are two complex numbers, then $$Re(z_1z_2)$$ is:
    Solution
    $$z_{1}=a_{1}+ib_{1}; z_{2}=a_{2}+ib_{2}$$
    $$z_{1}z_{2}=(a_{1}+ib_{1})(a_{2}+ib_{2})$$
    $$=a_{1}a_{2}+(a_{1}b_{2})i+(a_{2}b_{1})i-b_{1}b_{2}$$
    $$=a_{1}a_{2}-b_{1}b_{2}+(a_{1}b_{2}+a_{2}b_{1})i$$
    $$\therefore Re(z_{1}z_{2})=a_{1}a_{2}-b_{1}b_{2}$$
    $$=Re(z_{1})\cdot Re(z_{2})-Im(z_{1})\cdot Im(z_{2})$$
  • Question 7
    1 / -0
    In the argand diagram, the complex number z is in the fourth quadrant,  then $$\overline{z}$$, $$-z$$, $$\overline{-z}$$ are respectively are in quardrants
    Solution
    Let $$z = x +iy $$
    As $$z$$ is in the fourth quadrant, $$x >0 $$ and $$ y < 0 $$
    $$\overline{z} = x - iy $$
    In this case, the real part would be positive and the imaginary part would be positive. Hence, this would lie in the first quadrant. 

     $$-z  = -x - iy$$
     In this case, the real part would be negative and the imaginary part would be positive.  Hence this would lie in the second quadrant. 

     $$\overline{-z} = -x+iy $$
     In this case, the real part would be negative and the imaginary part would also be negative. Hence, this would lie in the third quadrant.  
  • Question 8
    1 / -0
    The value of $$1+(1+i)+(1+i)^2+(1+i)^3=$$
    Solution
    The given series is a G.P with a common ratio of $$(1+i)$$.
    Hence
     $$1+(1+i)+(1+i)^{2}+(1+i)^{3}$$

    $$=\dfrac{1-(1+i)^{4}}{1-(1+i)}$$

    Now
    $$1+i=\sqrt{2}(\dfrac{1+i}{\sqrt{2}})$$

    $$=\sqrt{2}(e^{i\frac{\pi}{4}})$$
    Hence
    $$\dfrac{1-(1+i)^{4}}{-i}$$

    $$=\dfrac{1-(\sqrt{2}(e^{i\frac{\pi}{4}}))^{4}}{-i}$$

    $$=\dfrac{1-4(e^{i\pi})}{-i}$$

    $$=\dfrac{1-4(-1)}{-i}$$

    $$=\dfrac{5}{-i}$$

    $$=5i$$
  • Question 9
    1 / -0
    lf $$(x+iy)(2+cos\theta+isin\theta)=3$$ then $$x^{2}+y^{2}-4x+3$$ is
    Solution
    $$(x+iy)(2+cos\theta+isin\theta)=3$$

    $$2x+x(cos\theta+isin\theta)+i2y+iy(cos\theta+isin\theta)=3$$

    $$2x+xcos\theta-ysin\theta+i(xsin\theta+2y+ycos\theta)=3$$

    Therefore, equating the real and imaginary parts of LHS and RHS gives us
     
    $$2x+xcos\theta-ysin\theta=3$$ 

    $$xsin\theta+ycos\theta+2y=0$$ 

    $$\Rightarrow xcos\theta-ysin\theta=3-2x$$

    Squaring both sides give us 

    $$x^{2}cos^{2}\theta+y^{2}sin^{2}\theta-2xycos\theta.sin\theta=(2x-3)^{2}$$ ...(i)

    And 

    $$xsin\theta+ycos\theta=-2y$$

    $$x^{2}sin^{2}\theta+y^{2}cos^{2}\theta+2xysin\theta.cos\theta=4y^{2}$$ ...(ii)

    Adding both i and ii gives us

    $$x^{2}+y^{2}=4y^{2}+(2x-3)^{2}$$

    $$x^{2}+y^{2}=4y^{2}+4x^{2}-12x+9$$

    $$3x^{2}+3y^{2}-12x+9=0$$

    $$x^{2}+y^{2}-4x+3=0$$
  • Question 10
    1 / -0
    If $$z_1$$, $$z_2$$ are the complex numbers such that $$|z_1+z_2|=|z_1|+|z_2|$$ then arg $$z_1 - $$ arg $$z_2$$ is
    Solution
    Let
    $$z_{1}=x_{1}+iy_{1}$$
    $$z_{2}=x_{2}+iy_{2}$$

    $$z_{1}+z_{2}=(x_{1}+x_{2})+i(y_{1}+y_{2})$$ ...(i)

    Now
    $$|z_{1}+z_{2}|=|z_{1}|+|z_{2}|$$

    $$\sqrt{(x_{1}+x_{2})^{2}+(y_{1}+y_{2})^{2}}=\sqrt{x_{1}^{2}+y_{1}^{2}}+\sqrt{x_{2}^{2}+y_{2}^{2}}$$

    Squaring both sides give us
    $$(x_{1}+x_{2})^{2}+(y_{1}+y_{2})^{2}=(x_{1})^{2}+(x_{2})^{2}+(y_{1})^{2}+(y_{2})^{2}+2\sqrt{x_{1}^{2}+y_{1}^{2}}\sqrt{x_{2}^{2}+y_{2}^{2}}$$

    $$(x_{1})^{2}+(x_{2})^{2}+(y_{1})^{2}+(y_{2})^{2}+2x_{1}x_{2}+2y_{1}y_{2}=(x_{1})^{2}+(x_{2})^{2}+(y_{1})^{2}+(y_{2})^{2}+2\sqrt{x_{1}^{2}+y_{1}^{2}}\sqrt{x_{2}^{2}+y_{2}^{2}}$$

    $$2x_{1}x_{2}+2y_{1}y_{2}=2\sqrt{x_{1}^{2}+y_{1}^{2}}\sqrt{x_{2}^{2}+y_{2}^{2}}$$

    $$(x_{1}x_{2}+y_{1}y_{2})^{2}=x_{1}^{2}x_{2}^{2}+y_{1}^{2}y_{2}^{2}+x_{1}^{2}y_{2}^{2}+y_{1}^{2}x_{2}^{2}$$
    $$x_{1}^{2}x_{2}^{2}+y_{1}^{2}y_{2}^{2}+2x_{1}x_{2}y_{1}y_{2}=x_{1}^{2}x_{2}^{2}+y_{1}^{2}y_{2}^{2}+x_{1}^{2}y_{2}^{2}+y_{1}^{2}x_{2}^{2}$$
    $$2x_{1}x_{2}y_{1}y_{2}=x_{1}^{2}y_{2}^{2}+y_{1}^{2}x_{2}^{2}$$
    Or
    $$x_{1}^{2}y_{2}^{2}+y_{1}^{2}x_{2}^{2}-2x_{1}x_{2}y_{1}y_{2}=0$$
    Or
    $$(x_{1}y_{2}-x_{2}y_{1})^{2}=0$$
    Or
    $$x_{1}y_{2}-x_{2}y_{1}=0$$
    $$x_{1}y_{2}=x_{2}y_{1}$$
    Or
    $$\dfrac{x_{1}}{y_{1}}=\dfrac{x_{2}}{y_{2}}$$

    Hence $$z_{1}$$  and $$z_{2}$$ are colinear.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now