Self Studies
Selfstudy
Selfstudy

Complex Numbers...

TIME LEFT -
  • Question 1
    1 / -0

    Let x,y ∈ R, then x + iy is a purely imaginary number if

  • Question 2
    1 / -0

    Find $$ p \in R $$ for $$x^2 - px + p + 3 = 0 $$ has

  • Question 3
    1 / -0

    $$arg\left( -\cfrac { 3 }{ 2 }  \right) $$ equals

  • Question 4
    1 / -0

    Find the which of the complex number has greatest modulus.

  • Question 5
    1 / -0

    If $$z=x+iy(x,y\epsilon R,x\neq -1/2),$$ the number of values of z satisfying $$\left | z \right |^{n}=z^{2}\left | z \right |^{n-2}+1.(n\epsilon N,n> 1)$$is

  • Question 6
    1 / -0

    If $$z_1=3+4i\\z_2=4-5i$$ Then find $$z_1+z_2$$

  • Question 7
    1 / -0

     If $$z_1=\sqrt { 3 } -i,z_2=1+i\sqrt { 3 } ,$$ then amp$$(z_1+z_2)=$$ 

  • Question 8
    1 / -0

    If $$z_1=3+4i,z_2=2-i$$ find $$z_2-z_1$$

  • Question 9
    1 / -0

    Argument and modulus of $$\left[\dfrac {1+i}{1-i}\right]^{2013}$$ are respectively ____

  • Question 10
    1 / -0

    The complex numbers $$z_1=8+9i, z_2=4-6i$$ then $$z_1-z_2$$

  • Question 11
    1 / -0

    If $$z$$ is a complex number such that $$|z|=1$$, then $$\left|\dfrac 1{\bar z}\right|$$ is 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 11

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now