Self Studies

Complex Numbers and Quadratic Equations Test -1

Result Self Studies

Complex Numbers and Quadratic Equations Test -1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let x,y ∈ R, then x + iy is a purely imaginary number if

    Solution

    Explanation:

    Purely imaginary number is a complex number which has only imaginary part ( iy) 

    But if  y=0 the complex number iy will become 0 which is real.

    Hence the condition for a number to be purely imaginary is x=0 and y≠0

     

  • Question 2
    1 / -0
    Find $$ p \in R $$ for $$x^2 - px + p + 3 = 0 $$ has
    Solution
    $$x^{2}-px+p+3=0$$ 

    (a) one positive root and one negative root: 

    $$\Rightarrow $$ product of roots should be negative.

     $$\Rightarrow $$ $$(P+3) < 0. $$

    $$\Rightarrow $$ $$P < -3$$ 

    and $$\Delta  > 0$$ 

    $$P^{2} - 4(p-3) > 0.$$

     $$P^{2}-4p+12 > 0$$ 

    $$(P-2)^{2}+8 > 0.$$

     (b) both roots are negative :

     $$\Rightarrow $$ sum of roots = negative 

    $$\Rightarrow $$ $$P=negative$$ 

    $$\Rightarrow $$$$P < 0$$ 

    product of roots should be positive 

    $$P + 3 > 0$$

     $$P > -3 $$

    $$\therefore P\in (-3,0)$$
  • Question 3
    1 / -0
    $$arg\left( -\cfrac { 3 }{ 2 }  \right) $$ equals
    Solution
    Let $$z = r(cos\theta +isin \theta ) $$

    and $$r>=0$$

    $$\therefore arg (\dfrac{-3}{2}) = \pi$$

    Where $$r = \frac{3}{2} \ and \ \theta = \pi $$
  • Question 4
    1 / -0
    Find the which of the complex number has greatest modulus.
    Solution
    $$|7-5i| = \sqrt {54 } $$

    $$|\sqrt {3} +i \sqrt 2| = \sqrt 5$$ 

    $$ | -8+15i| = \sqrt {289}$$

    $$ |-3+3i| = 3\sqrt 2$$

    Thus option C has the greatest modulus.
  • Question 5
    1 / -0
    If $$z=x+iy(x,y\epsilon R,x\neq -1/2),$$ the number of values of z satisfying $$\left | z \right |^{n}=z^{2}\left | z \right |^{n-2}+1.(n\epsilon N,n> 1)$$is
    Solution
    $$\begin{array}{l} we\, \, write\, , \\ { \left| z \right| ^{ n } }={ \left| z \right| ^{ n-2 } }\left( { { z^{ 2 } }+z } \right) +1\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left\{ { we\, know,\, \, all\, \, are\, real\, no. } \right.  \\ so,\, \, \, \, { z^{ 2 } }+z={ \overline { z } ^{ 2 } }+\overline { z } \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left[ { where\, ,\, \, { z^{ 2 } }+z\, \, \, \, is\, real\, no.\,  } \right.  \\ \Rightarrow { z^{ 2 } }\, -{ \overline { z } ^{ 2 } }+z-\overline { z } =0 \\ \Rightarrow (z-\overline { z } )\, \, (z+\overline { z } +1)=0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left| \begin{array}{l} \, z=x+i\, y \\ \, \overline { z } =x-i\, y \end{array} \right.  \\ \, \, \therefore \, \, \, \, 2\, i\, y\, (2x+1)=0 \\ \, \, \, y=0\, \, \, \, \, \, \, \, \, \, \, or\, \, \, \, \, \, x=-\frac { 1 }{ 2 } \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, (Here,\, \, \, z\, \, is\, a\, \, \, real\, \, \, number. \\ Let\, see, \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left| z \right| =x \\ \left| \begin{array}{l} \, \, { x^{ n } }={ x^{ n-2 } }.{ x^{ 2 } }+1 \\ \, \, \, { \left| x \right| ^{ n-2 } }.\, x=-1 \end{array} \right.  \\ \, \, \, \therefore \, \, \, \, x=-1\,  \\ so,\, number\, of\, z\, =1\, \, and\, \, the\, correct\, option\, is\, B.\, \, \, \, \,  \end{array}$$
  • Question 6
    1 / -0
    If $$z_1=3+4i\\z_2=4-5i$$ Then find $$z_1+z_2$$
    Solution
    $$z_1=3+4i\\z_2=4-5i\\z_1+z_2=3+4i+4-5i\\7-i$$
  • Question 7
    1 / -0
     If $$z_1=\sqrt { 3 } -i,z_2=1+i\sqrt { 3 } ,$$ then amp$$(z_1+z_2)=$$ 
    Solution
    $$z_1=\sqrt { 3 } -i,z_2=1+i\sqrt { 3 } $$ 
    $$ z_1+z_2=(\sqrt { 3 }+1)+i(\sqrt{3}-1) $$
    $$ z_1+z_2=(\sqrt { 3 }+1)+i(\sqrt{3}-1) $$
    $$\left| z_1+z_2 \right|=  \sqrt {(\sqrt{3}+1)^2+(\sqrt{3}-1)^2}=2\sqrt{2}$$

  • Question 8
    1 / -0
    If $$z_1=3+4i,z_2=2-i$$ find $$z_2-z_1$$
    Solution
    Given $$z_1=3+4i\\z_2=2-i\\z_2-z_1=2-i-3-4i=-1-5i$$
  • Question 9
    1 / -0
    Argument and modulus of $$\left[\dfrac {1+i}{1-i}\right]^{2013}$$ are respectively ____
    Solution
    Let $$P={ [\cfrac { 1+i }{ 1-i } ] }^{ 2013 }={ [\cfrac { \sqrt { 2 } { e }^{ \cfrac { i\pi  }{ 4 }  } }{ \sqrt { 2 } { e }^{ \cfrac { -i\pi  }{ 4 }  } } ] }^{ 2013 }=({ e }^{ \cfrac { i2013\pi  }{ 2 }  })$$
    $$P=\cos { (2013\cfrac { \pi  }{ 2 } ) } +i\sin { (2013\cfrac { \pi  }{ 2 } ) } =i\sin { (-\cfrac { \pi  }{ 2 } ) } $$
    So, argument $$=-\cfrac { \pi  }{ 2 } $$
    and modulus$$=1$$
  • Question 10
    1 / -0
    The complex numbers $$z_1=8+9i, z_2=4-6i$$ then $$z_1-z_2$$
    Solution
    $$z_1=8+9i\\z_2=4-6i\\z_1-z_2=8+9i-4+6i=4+15i$$
  • Question 11
    1 / -0
    If $$z$$ is a complex number such that $$|z|=1$$, then $$\left|\dfrac 1{\bar z}\right|$$ is 
    Solution
    Let $$z=x+iy\\|z|=\sqrt{x^2+y^2}=1\\x^2+y^2=1\\\dfrac 1z=\dfrac1{x+iy}\\\dfrac{x-iy}{\sqrt{x^2+y^2}}=x-iy\\\left|\dfrac 1z\right|=\sqrt{x^2+y^2}=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now