$$\begin{array}{l} we\, \, write\, , \\ { \left| z \right| ^{ n } }={ \left| z \right| ^{ n-2 } }\left( { { z^{ 2 } }+z } \right) +1\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left\{ { we\, know,\, \, all\, \, are\, real\, no. } \right. \\ so,\, \, \, \, { z^{ 2 } }+z={ \overline { z } ^{ 2 } }+\overline { z } \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left[ { where\, ,\, \, { z^{ 2 } }+z\, \, \, \, is\, real\, no.\, } \right. \\ \Rightarrow { z^{ 2 } }\, -{ \overline { z } ^{ 2 } }+z-\overline { z } =0 \\ \Rightarrow (z-\overline { z } )\, \, (z+\overline { z } +1)=0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left| \begin{array}{l} \, z=x+i\, y \\ \, \overline { z } =x-i\, y \end{array} \right. \\ \, \, \therefore \, \, \, \, 2\, i\, y\, (2x+1)=0 \\ \, \, \, y=0\, \, \, \, \, \, \, \, \, \, \, or\, \, \, \, \, \, x=-\frac { 1 }{ 2 } \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, (Here,\, \, \, z\, \, is\, a\, \, \, real\, \, \, number. \\ Let\, see, \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left| z \right| =x \\ \left| \begin{array}{l} \, \, { x^{ n } }={ x^{ n-2 } }.{ x^{ 2 } }+1 \\ \, \, \, { \left| x \right| ^{ n-2 } }.\, x=-1 \end{array} \right. \\ \, \, \, \therefore \, \, \, \, x=-1\, \\ so,\, number\, of\, z\, =1\, \, and\, \, the\, correct\, option\, is\, B.\, \, \, \, \, \end{array}$$