Self Studies

Complex Numbers and Quadratic Equations Test 15

Result Self Studies

Complex Numbers and Quadratic Equations Test 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The roots of $$2{x}^{2}-6x+3=0$$ are
    Solution
    $$2x^2-6x+3=0$$
    $$x=\dfrac{6\pm\sqrt{36-24}}{2}$$
    $$x=\dfrac{6\pm\sqrt{12}}{2}$$
  • Question 2
    1 / -0
    For what values of $$k$$ will the quadratic equation : $$\displaystyle { 2x }^{ 2 }-kx+1=0$$ have real and equal roots?
    Solution
    Given equation is: $$\displaystyle { 2x }^{ 2 }-kx+1=0$$
    Hence, $$\displaystyle a=2,b=-k.c=1$$
    $$\displaystyle D={ b }^{ 2 }-4ac={ \left( -k \right)  }^{ 2 }-4\times 2\times 1-{ k }^{ 2 }-8$$
    We know that a quadratic equation has real and equal roots, if
     $$\displaystyle D=0\Leftarrow { k }^{ 2 }-8=0\Rightarrow { k }^{ 2 }=8$$
    $$\displaystyle k=\pm \sqrt { 8 } =\pm 2\sqrt { 2 } $$
  • Question 3
    1 / -0
    Find the value of 'm' so that the equation $$\displaystyle { 9x }^{ 2 }-8mx-9=0$$ has one root as the negative of the other. 
    Solution
    Given equation is: $$9x^2-8mx-9=0$$
    Comparing with standard equation $$ax^{2}+bx+c=0$$, we get
    $$a=9, b=-8m, c=-9$$
    Let $$\displaystyle \alpha ,\beta $$ be the roots
    Then, $$ \alpha +\beta =-\dfrac{b}{a}=\dfrac { 8m }{ 9 } $$
    But, $$\alpha =-\beta $$
    Thus, $$\alpha +\beta =0$$
    $$\Rightarrow \dfrac{8m}{9}=0$$
    $$\Rightarrow m=0$$
  • Question 4
    1 / -0
    Given that $$kx(x-2)+6=0$$ has real and equal roots, the root is
    Solution
    Given equation is: $$kx(x-2)+6=0$$
    $$kx^{2}-2kx+6=0$$
    Then $$a=k  ,b=-2k ,c=6$$
    Then $$b^{2}-4ac=0$$
    So $$(-2k)^{2}-4k(6)=0$$
    $$4k^{2}-24k=0$$
    $$4k(k-6)=0$$
    $$ k=0$$ and $$k=6$$
    Put value of $$k $$
    Then $$6x^{2}-12x+6=0$$
    $$6x^{2}-6x-6x+6=0$$
    $$ 6x(x-1)-6(x-1)=0$$
    $$\therefore x=1$$
  • Question 5
    1 / -0
    The value of $$k$$ for which $$4{x}^{2}-4\sqrt {3}x+k=0$$ is satisfied by only one real value of $$x$$ is
    Solution
    We know that $$(a-b)^{2}=a^{2}-2ab+b^{2}$$
    Given Equation is $$4x^{2}-4\sqrt{3}x+k$$
    Co-pairing both equations, we get
    $$a=2x$$ and $$ k=3$$
  • Question 6
    1 / -0
    $$kx^2-2\sqrt 5x +4 = 0$$
    For what value of $$k$$ will the quadratic equation have real and equal roots ?
    Solution
    Given equation is $$\displaystyle { kx }^{ 2 }-2\sqrt { 5 } +4=0$$
    $$\displaystyle a=k,b=-2\sqrt { 5 } ,c=4$$
    $$\displaystyle \therefore  D={ b }^{ 2 }-4ac={ \left( -2\sqrt { 5 }  \right)  }^{ 2 }-4\times k\times 4=20-16$$
    We know that a quadratic equation has real and equal roots, if $$D=0$$.
    $$\displaystyle \Rightarrow 20-16k=0$$
    $$\displaystyle \Rightarrow  -16k=-20$$
    $$\displaystyle \Rightarrow k=\frac { 20 }{ 16 } =\frac { 5 }{ 4 } $$
  • Question 7
    1 / -0
    For what values of k will the quadratic equation :  $$\displaystyle { 3x }^{ 2 }+kx+3=0$$ have real equal roots? 
    Solution
    Given equation is: $$\displaystyle { 3x }^{ 2 }+kx+3=0$$
    Here, $$\displaystyle a=3,b=k,c=3$$
    Now, $$\displaystyle D={ b }^{ 2 }-4ac={ k }^{ 2 }-4\times 3\times 3{ k }^{ 2 }-36$$
    We know that a quadratic equation has real and equal roots, 
    If $$\displaystyle D=0\Rightarrow { k }^{ 2 }-36=0\Rightarrow { k }^{ 2 }=36$$
    $$\displaystyle \therefore \quad k=\pm \sqrt { 36 } =\pm 6$$
  • Question 8
    1 / -0
    For what value of 'k' the equation $$\displaystyle \left( k+3 \right) { x }^{ 2 }-\left( 5-k \right) x+1=0$$ has coincident roots ?
    Solution
    For coincident roots, $$\displaystyle D=0$$
    Now, $$\displaystyle { \left[ -\left( 5-k \right)  \right]  }^{ 2 }-4\times \left( k+3 \right) \times 1=0$$
    $$\displaystyle \Rightarrow \quad 25+{ k }^{ 2 }-10k-4k-12=0$$
    $$\displaystyle \Rightarrow \quad { k }^{ 2 }-14k+13=0$$
    $$\displaystyle \Rightarrow \quad \left( k-13 \right) \left( k-1 \right) =0$$
    $$\displaystyle \therefore \quad k=13,1$$
  • Question 9
    1 / -0
    Find the value of $$k$$ for which the equation
    $${x}^{2}+kx+81=0$$ and $${x}^{2}-6\sqrt {2}x+k=0$$ has both real roots, $$k> 0$$
    Solution
    For, $${x}^{2}+kx+81=0$$ to have real roots

    $${k}^{2}-324 \ge 0$$ $$\Rightarrow$$ $$k\ge 18.......(1)$$

    For $${x}^{2}-6\sqrt {2}x+k=0$$ to have real roots

    $$72-4k\ge 0$$ $$\Rightarrow$$ $$k\le 18..........(2)$$

    For both equations to have real roots $$k=18$$
  • Question 10
    1 / -0
    For what value of $$k$$ will the quadratic equation $$\displaystyle { 2x }^{ 2 }+3x+k=0$$ have real equal roots ?
    Solution
    Given equation is $$\displaystyle 2{ x }^{ 2 }+3x+k=0$$
    Here, $$\displaystyle a=2,b=3,c=k$$
    $$\displaystyle \because D={ b }^{ 2 }-4ac={ \left( 3 \right)  }^{ 2 }-4\times 2\times k=9-8k$$.
    We know that a quadratic equation has real and equal roots if $$D = 0$$.
    $$\displaystyle \Rightarrow 9-8k=0\Rightarrow -8k=-9$$
    $$\displaystyle \Rightarrow   k=\frac { 9 }{ 8\\  } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now