Self Studies

Complex Numbers and Quadratic Equations Test 16

Result Self Studies

Complex Numbers and Quadratic Equations Test 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The values of $$b$$ for which the equation $$\displaystyle { 2bx }^{ 2 }-40x+25=0$$ has equal root is :
    Solution
    Given equation is $$2bx^2-40x+25=0$$
    $$\therefore a=2b, b=-40, c=25$$
    For equal roots, $$D = 0$$
    $$\therefore b^2-4ac=0$$
    $$\displaystyle \Rightarrow  { \left( 40 \right)  }^{ 2 }-4\times 25\times 2b=0$$
    $$\displaystyle \Rightarrow  200b=1600$$
    $$\displaystyle \Rightarrow  b=8$$
  • Question 2
    1 / -0
    If $$z_1, z_2$$ and $$z_3$$ are complex numbers such that $$|z_1| = |z_2| = |z_3| = \left | \displaystyle \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right | = 1,$$ then $$|z_1 + z_2 + z_3|$$ is
    Solution
    $$|z_1| = |z_2| = |z_3| = 1$$ (given)
    Now $$|z_1| = 1        \Rightarrow |z_r|^2 = 1$$
    $$\Rightarrow z_1 \bar z_1 = 1$$
    Similarly $$z_2 \bar z_2 = 1, z_3 \bar z_3 = 1$$
    Now $$\displaystyle \left | \dfrac{1}{z_1} + \dfrac{1}{z_2} + \dfrac{1}{z_3} \right | = 1$$
    $$\Rightarrow |\bar z_1 + \bar z_2 + \bar z_3| = 1$$
    $$\Rightarrow |\overline{z_1 + z_2 + z_3}| = 1 \Rightarrow |z_1 + z_2 + z_3| = 1$$
  • Question 3
    1 / -0
    For what values of k, will quadratic equation $$\displaystyle { 9x }^{ 2 }+3kx+4=0$$ have real and equal roots? 
    Solution
    Given equation is Comparing with $$\displaystyle { ax }^{ 2 }+bx+c=0$$
    $$\displaystyle \Rightarrow a=9,b=3k,c=4$$, we get
    $$\displaystyle D={ b }^{ 2 }-4ac={ \left( 3k \right)  }^{ 2 }-4\left( 9 \right) \left( 4 \right) =9{ k }^{ 2 }-144$$
    Since the quadratic equation has real and equal roots. 
    Therefore, $$\displaystyle   D=0$$
    $$\Rightarrow \displaystyle { 9k }^{ 2 }-144=0$$
    $$\Rightarrow \displaystyle { k }^{ 2 }=\frac { 144 }{ 9 } =16$$
    $$\Rightarrow \displaystyle k=\pm \sqrt { 16 } =\pm 4$$
    $$\Rightarrow \displaystyle k=4$$ or $$ -4$$
  • Question 4
    1 / -0
    Find the value of P for which the following equation has equal roots $$\displaystyle { px }^{ 2 }-8x+2p=0$$ 
    Solution
    $$\displaystyle { px }^{ 2 }-8x+2p=0$$ 
    here, $$\displaystyle a=p,b=-8,c=2p$$
    For equal roots $$\displaystyle { b }^{ 2 }-4ac=0$$
    or, $$\displaystyle { \left( -8 \right)  }^{ 2 }-4\left( p \right) \left( 2p \right) =0$$
    or, $$\displaystyle 64-8{ p }^{ 2 }=0$$
    or, $$\displaystyle -8{ p }^{ 2 }=-64$$
    or, $$\displaystyle 8{ p }^{ 2 }=64$$
    or, $$\displaystyle { p }^{ 2 }=\frac { 64 }{ 8 } =8$$
    or, $$\displaystyle p=\pm \sqrt { 8 } =\pm 2\sqrt { 2 } $$
  • Question 5
    1 / -0
    Which of the following equations has no solution for $$a$$ ?
    Solution
    You can determine which of the equations has no solution by determining which equation has a negative discriminant:
    (A) $${b}^{2}-4ac={(-6)}^{2}-4(1)(7)=36-28=8$$
    (B) $${b}^{2}-4ac={(6)}^{2}-4(1)(-7)=36+28=64$$
    (C) $${b}^{2}-4ac={(4)}^{2}-4(1)(3)=16-12=4$$
    (D) $${b}^{2}-4ac={(-4)}^{2}-4(1)(3)=16-12=4$$
    (E) $${b}^{2}-4ac={(-4)}^{2}-4(1)(5)=16-20=-4$$
  • Question 6
    1 / -0
    The roots of the equation $${2x^{2 }+ 3x + 2} = 0$$ are
    Solution
    Given quadratic is $$2x^2+3x+2=0$$
    Comparing it with standard from of quadratic equation $$ax^2+bx+c=0$$, we get $$a=2, b=3, c=2$$
    Thus discriminant of the given quadratic is
    $$D=b^2-4ac=9-16=-7<0$$
    Hence roots of given quadratic are imaginary.
    Thus choice $$D$$ is correct
  • Question 7
    1 / -0
    Let $${ X }_{ n }=\left\{ z=x+iy:{ \left| z \right|  }^{ 2 } \le \dfrac { 1 }{ n }  \right\} $$ for all integers $$n\ge 1$$. Then, $$\displaystyle\bigcap _{ n=1 }^{ \infty  }{ { X }_{ n } } $$ is
    Solution
    Given, $${ X }_{ n }=\left\{ z=x+iy:{ \left| z \right|  }^{ 2 }\le \dfrac { 1 }{ n }  \right\} $$
                      $$=\left\{ { x }^{ 2 }+{ y }^{ 2 }\le \dfrac { 1 }{ n }  \right\} $$
    $$\therefore { X }_{ 1 }=\left\{ { x }^{ 2 }+{ y }^{ 2 }\le 1 \right\} $$
         $${ X }_{ 2 }=\left\{ { x }^{ 2 }+{ y }^{ 2 }\le \dfrac { 1 }{ 2 }  \right\} $$
         $${ X }_{ 3 }=\left\{ { x }^{ 2 }+{ y }^{ 2 }\le \dfrac { 1 }{ 3 }  \right\} $$
         .............................................
         .............................................
         .............................................
         $${ X }_{ \infty  }=\left\{ { x }^{ 2 }+{ y }^{ 2 }\le 0 \right\} $$
    $$\therefore \bigcap _{ n=1 }^{ \infty  }{ { X }_{ n } } ={ X }_{ 1 }\cap { X }_{ 2 }\cap { X }_{ 3 }\cap \dots \cap { X }_{ \infty  }$$
                   $$=\left\{ { x }^{ 2 }+{ y }^{ 2 }=0 \right\} $$
    Hence, $$\bigcap _{ n=1 }^{ \infty  }{ { X }_{ n } } $$ is a singleton set.
  • Question 8
    1 / -0
    The modulus of $$\dfrac { 1-i }{ 3+i } +\dfrac { 4i }{ 5 } $$ is
    Solution
    Let $$z=\dfrac { 1-i }{ 3+i } +\dfrac { 4i }{ 5 } $$
             $$=\dfrac { 5-5i+12i-4 }{ 5\left( 3+i \right)  } =\dfrac { 1+7i }{ 5\left( 3+i \right)  } $$
             $$=\dfrac { \left( 1+7i \right) \left( 3-i \right)  }{ 5\left( 9+1 \right)  } $$
             $$=\dfrac { 10+20i }{ 50 } =\dfrac { 1+2i }{ 5 } $$
    $$\therefore \left| z \right| =\sqrt { { \left( \dfrac { 1 }{ 5 }  \right)  }^{ 2 }+{ \left( \dfrac { 2 }{ 5 }  \right)  }^{ 2 } } =\dfrac { 1 }{ 5 } \sqrt { 1+4 } =\dfrac { \sqrt { 5 }  }{ 5 } $$
  • Question 9
    1 / -0
    In the complex numbers, where $$i = \sqrt {-1}$$, the conjugate of any value $$a + bi$$ is $$a -ib$$. What is the result when you multiply $$2 + 7i$$ by its conjugate?
    Solution
    Conjugate of $$ 2 + 7i $$ is $$ 2-7i$$
    $$ (2 + 7i) \times (2-7i) = 2^2 - (7i)^2$$
    $$ = 4 -49(-1) $$
    $$= 4 + 49 $$
    $$= 53 $$
  • Question 10
    1 / -0
    In the complex numbers, where $$i^{2} = -1$$, what is the value of $$5 + 6i$$ multiplied by $$3-  2i$$?
    Solution
    We know, $$i^2=-1$$
    The required product is $$ (5 + 6i)(3-2i) $$
    $$= 15-10i+18i+12 $$
    $$= 27 + 8i $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now