$$\left|\dfrac{z+i}{z-1}\right|=2$$
Put, $$z = x + iy$$
$$\therefore\,\left|\dfrac{x + iy+i}{x + iy-1}\right|=2$$
$$\Rightarrow\,\left|\dfrac{x + i\left(y+1\right)}{\left(x-1\right)+iy}\right|=2$$
$$\Rightarrow\,\left|x + i\left(y+1\right)\right|=2\left|\left(x-1\right)+iy\right|$$
$$\Rightarrow\,\sqrt{{x}^{2}+{\left(y+1\right)}^{2}}=2\sqrt{{\left(x-1\right)}^{2}+{y}^{2}}$$
Squaring both sides, we get
$$\Rightarrow\,{x}^{2}+{\left(y+1\right)}^{2}=4{\left(x-1\right)}^{2}+4{y}^{2}$$
$$\Rightarrow\,{x}^{2}-{\left(2x-2\right)}^{2}={\left(2y\right)}^{2}-{\left(y+1\right)}^{2}$$
$$\Rightarrow\,\left(x-2x+2\right)\left(x+2x-2\right)=\left(2y-y-1\right)\left(2y+y+1\right)$$
$$\Rightarrow\,\left(-x+2\right)\left(3x-2\right)=\left(y-1\right)\left(3y+1\right)$$
$$\Rightarrow\,-3{x}^{2}+2x+6x-4=3{y}^{2}+y-3y-1$$
$$\Rightarrow\,-3{x}^{2}+8x-4=3{y}^{2}-2y-1$$
$$\Rightarrow\,-3{x}^{2}+8x-4-3{y}^{2}+2y+1=0$$
$$\Rightarrow\,3{x}^{2}+3{y}^{2}-8x-2y+3=0$$
$$\Rightarrow\,{x}^{2}+{y}^{2}-\dfrac{8}{3}x-\dfrac{2}{3}y+1=0$$ is of the form $${x}^{2}+{y}^{2}+2gx+2fy+c=0$$
where $$g=\dfrac{4}{3},\,f=\dfrac{1}{3}$$ and $$c=1$$
Radius$$=r=\sqrt{{\left(\dfrac{4}{3}\right)}^{2}+{\left(\dfrac{1}{3}\right)}^{2}+1}=\sqrt{\dfrac{16}{9}+\dfrac{1}{9}-1}=\sqrt{\dfrac{17-9}{9}}=\dfrac{\sqrt{8}}{3}=\dfrac{2\sqrt{2}}{3}$$
The locus of $$z$$ is a circle with radius $$\dfrac{2\sqrt{2}}{3}$$