Self Studies

Complex Numbers and Quadratic Equations Test 29

Result Self Studies

Complex Numbers and Quadratic Equations Test 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$|Z|=2,|z_{2}|=3,|z_{3}=4|$$ and $$|z_{1}+z_{2}+z_{3}|=5$$ then $$|4z_{2}z_{3}+9z_{3}z_{1}+16z_{1}z_{2}|=$$
    Solution

    Solution:- (D) 120
    $$\left| {z}_{1} \right| = 2, \left| {z}_{2} \right| = 3, \left| {z}_{3} \right| = 4, \left| {z}_{1} + {z}_{2} + {z}_{3} \right| = 5$$
    $$\left| 4 {z}_{2} {z}_{3} + 9 {z}_{3} {z}_{1} + 16 {z}_{1} {z}_{2} \right| = \cfrac{\left| {z}_{1} \right| \left| {z}_{2} \right| \left| {z}_{3} \right|}{\left| {z}_{1} \right| \left| {z}_{2} \right| \left| {z}_{3} \right|} \left| 4 {z}_{2} {z}_{3} + 9 {z}_{3} {z}_{1} + 16 {z}_{1} {z}_{2} \right|$$
    $$= \left| {z}_{1} \right| \left| {z}_{2} \right| \left| {z}_{3} \right| \left| \cfrac{4}{{z}_{1}} + \cfrac{9}{{z}_{2}} + \cfrac{16}{{z}_{3}} \right|$$
    $$= \left( 2 \times 3 \times 4 \right) \left| \cfrac{4 \bar{{z}_{1}}}{{\left| {z}_{1} \right|}^{2}} + \cfrac{9 \bar{{z}_{2}}}{{\left| {z}_{2} \right|}^{2}} + \cfrac{16 \bar{{z}_{3}}}{{\left| {z}_{3} \right|}^{2}}\right|$$
    $$= 24 \left| \cfrac{4 \bar{{z}_{1}}}{{2}^{2}} + \cfrac{9 \bar{{z}_{2}}}{{3}^{2}} + \cfrac{16 \bar{{z}_{3}}}{{4}^{2}} \right|$$
    $$= 24 \left| \cfrac{4 \bar{{z}_{1}}}{4} + \cfrac{9 \bar{{z}_{2}}}{9} + \cfrac{16 \bar{{z}_{3}}}{16} \right|$$
    $$= 24 \left| \bar{{z}_{1}} + \bar{{z}_{2}} + \bar{{z}_{3}} \right|$$
    $$= 24 \left| \overline{{z}_{1} + {z}_{2} + {z}_{3}} \right|$$
    $$= 24 \times 5$$
    $$= 120$$
    Hence, $$\left| 4 {z}_{2} {z}_{3} + 9 {z}_{3} {z}_{1} + 16 {z}_{1} {z}_{2} \right| = 120$$.
  • Question 2
    1 / -0
    If $$\dfrac{x - 3}{3 + i} + \dfrac{y - 3}{3 - i} = i $$ where $$x , y \in R$$ then
    Solution
    $$\dfrac{x-3}{3+i}+\dfrac{y-3}{3-i}=i$$
    $$\dfrac{(x-3)(3-i)}{10}+\dfrac{(y-3)(3+i)}{10}=i$$
    $$3(x-3)+3(y-3)-i((x-3+(3-y))=10i$$
    $$3(x+y-6)-i(x-y)=10i$$
    compare real and imaginary point
    $$x+y=6$$
    $$y-x=10$$
    $$\Rightarrow y=8, x=-2$$
  • Question 3
    1 / -0
    Consider two quadratic expressions $$f(x)=ax^2+bx+c$$ and $$g(x)=ax^2+px+q$$, $$(b\neq q)$$ such that their discriminants are equal. If $$f(x)=g(x)$$ has a root $$x=\alpha$$, then?
    Solution
    Discriminants equal means
    $$b^2 - 4ac = p^2-4aq$$
    Also given $$x=\alpha$$ for $$f(x) = g(x)$$
    $$b\alpha + c = p\alpha + q$$
    $$\alpha (b-p) = q-c$$
    $$\alpha = \cfrac{q-c}{b-p}$$
    As we have,
    $$b^2 - p^2 = 4a(c-q)$$
    $$b+p = -4a\alpha$$
    $$\alpha = -\cfrac{b+p}{4a}$$
    Let the roots of $$f(x)$$ be $$x_1,x_2$$ and the roots of $$g(x)$$ be $$x_3,x_4$$
    $$x_1 + x_2 = -\cfrac{b}{a}$$
    $$x_3 + x_4 = -\cfrac{p}{a}$$
    AM of $$x_1,x_2,x_3,x_4$$ is $$\cfrac{x_1+x_2+x_3+x_4}{4}$$
    $$\cfrac{x_1+x_2+x_3+x_4}{4} = -\cfrac{b+p}{4a} = \alpha$$

  • Question 4
    1 / -0
    The complex number $$\dfrac{1 + 2i}{1 - i}$$ lies in which quadrant of the complex plane.
    Solution
    $$\dfrac{1+2i}{1-i}$$
    $$\Rightarrow \dfrac{1+2i}{1-i}\times \dfrac{1+i}{1+i}$$
    $$=\dfrac{1+i+2i-2i^2}{1-i^2}=\dfrac{1+3i-2}{2}$$
    $$=\dfrac{-1+3i}{2}$$
    $$\therefore$$ It lies in $$2^{nd}$$ Quadrant.
  • Question 5
    1 / -0
    Given $$\left| z \right| =4$$ and $$Argz=\dfrac{5z}{6}$$, then $$z$$ is
    Solution
    Given that

    $$\Rightarrow |z|=4$$ and $$Arg \space z=\dfrac{5\pi}{6}$$

    $$\Rightarrow $$Let $$z=x+iy$$

    $$\Rightarrow |z|=4$$ 

    $$\Rightarrow \sqrt{x^2+y^2}=4$$

    $$\Rightarrow {x^2+y^2}=16$$                ...$$(1)$$

    $$\Rightarrow Arg \space z=\dfrac{5\pi}{6}$$

    $$\Rightarrow \tan ^{-1}(\dfrac{y}{x})=\dfrac{5\pi}{6}$$

    $$\Rightarrow \dfrac{y}{x}=\tan (\dfrac{5\pi}{6})$$

    $$\Rightarrow \dfrac{y}{x}=-\dfrac{1}{\sqrt 3}$$
      
    $$\Rightarrow x^2=3y^2$$

    Substituting this in $$(1)$$ we get,

    $$\Rightarrow x^2+\dfrac{x^2}{3}=16$$

    $$\Rightarrow \dfrac{4x^2}{3}=16$$

    $$\Rightarrow x^2=12$$

    $$\Rightarrow x=\pm 2\sqrt 3$$

    $$\Rightarrow y=\mp 2$$

    $$\Rightarrow \theta$$ lies in $$2^{nd} Quadrant$$

    Hence, $$\Rightarrow z=-2\sqrt 3+2i$$
  • Question 6
    1 / -0
    The locus of $$z$$ such that $$\left| {\dfrac{{z + i}}{{z - 1}}} \right| = 2$$
    Solution
    $$\left|\dfrac{z+i}{z-1}\right|=2$$

    Put, $$z = x + iy$$

    $$\therefore\,\left|\dfrac{x + iy+i}{x + iy-1}\right|=2$$

    $$\Rightarrow\,\left|\dfrac{x + i\left(y+1\right)}{\left(x-1\right)+iy}\right|=2$$

    $$\Rightarrow\,\left|x + i\left(y+1\right)\right|=2\left|\left(x-1\right)+iy\right|$$

    $$\Rightarrow\,\sqrt{{x}^{2}+{\left(y+1\right)}^{2}}=2\sqrt{{\left(x-1\right)}^{2}+{y}^{2}}$$

    Squaring both sides, we get
    $$\Rightarrow\,{x}^{2}+{\left(y+1\right)}^{2}=4{\left(x-1\right)}^{2}+4{y}^{2}$$

    $$\Rightarrow\,{x}^{2}-{\left(2x-2\right)}^{2}={\left(2y\right)}^{2}-{\left(y+1\right)}^{2}$$

    $$\Rightarrow\,\left(x-2x+2\right)\left(x+2x-2\right)=\left(2y-y-1\right)\left(2y+y+1\right)$$

    $$\Rightarrow\,\left(-x+2\right)\left(3x-2\right)=\left(y-1\right)\left(3y+1\right)$$
    $$\Rightarrow\,-3{x}^{2}+2x+6x-4=3{y}^{2}+y-3y-1$$

    $$\Rightarrow\,-3{x}^{2}+8x-4=3{y}^{2}-2y-1$$

    $$\Rightarrow\,-3{x}^{2}+8x-4-3{y}^{2}+2y+1=0$$

    $$\Rightarrow\,3{x}^{2}+3{y}^{2}-8x-2y+3=0$$

    $$\Rightarrow\,{x}^{2}+{y}^{2}-\dfrac{8}{3}x-\dfrac{2}{3}y+1=0$$ is of the form $${x}^{2}+{y}^{2}+2gx+2fy+c=0$$

    where $$g=\dfrac{4}{3},\,f=\dfrac{1}{3}$$ and $$c=1$$

    Radius$$=r=\sqrt{{\left(\dfrac{4}{3}\right)}^{2}+{\left(\dfrac{1}{3}\right)}^{2}+1}=\sqrt{\dfrac{16}{9}+\dfrac{1}{9}-1}=\sqrt{\dfrac{17-9}{9}}=\dfrac{\sqrt{8}}{3}=\dfrac{2\sqrt{2}}{3}$$

    The locus of $$z$$ is a circle with radius $$\dfrac{2\sqrt{2}}{3}$$
  • Question 7
    1 / -0
    $$\left(\dfrac{1 + i}{1 - i}\right)^4 + \left(\dfrac{1 - i}{1 + i}\right)^4 = $$ 
    Solution
    $$\left( \dfrac{1+i}{1-i} \right)^{4}+ \left( \dfrac{1-i}{1+i} \right)^{4}$$
    $$= \left( \dfrac{(1+i)^{2}}{1-i^{2}} \right)^{4}+ \left( \dfrac{(1-i)^{2}}{1-i^{2}} \right)^{4}$$
    $$=\dfrac{1}{2^{4}} (1+i^{2} +2 i)^{4}+ \dfrac{1}{2^{4}} (1+i^{2}-2i)^{4}$$
    $$=\dfrac{1}{2^{4}} (1-1+ 2i)^{4}+ \dfrac{1}{2^{4}} (1-1-2i)^{4}$$
    $$=\dfrac{2^{4}}{2^{4}} (i^{4})+ \dfrac{2^{4}}{2^{4}} (i)^{4}$$
    $$= 1+1 =2$$
  • Question 8
    1 / -0
    In the graph of the parametric equations $$\begin{cases} x={ t }^{ 2 }+t \\ y={ t }^{ 2 }-t \end{cases}$$ for integral values of t.
    Solution
    $$x=t^2+t = t(t+1)$$
    $$x<0\,  \forall \, t\in (-1,0)$$ 

    $$\therefore x<0\Rightarrow t=$$ not an integer. 

    $$\therefore x\geqslant 0$$ for all integral values of $$t$$ 
    A option is cvorrect. 

  • Question 9
    1 / -0
    If $$\left| {z - 1} \right| = 2$$, then the value of $$z\overline z  - z - \overline z $$ is equal to: 
    Solution
    Given $$|z-1|=2$$
    we know that $$|z|^{2}=z.\bar{z}$$
    so taking square root on both side.
    $$|z-1|^{2}=4$$
    $$(z-1)(\bar{z-1})=4$$
    $$(z-1)(\bar{z}-1)=4$$
    $$z.\bar{z}-\bar{z}-z+1=4$$
    $$z.\bar{z}-z-\bar{z}=3$$
    so answer is 3.
  • Question 10
    1 / -0
    If $$a < b < c < d$$, then the roots of the equation $$(x-a)(x-c)+2(x-b)(x-d)=0$$ are?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now