Self Studies

Complex Numbers...

TIME LEFT -
  • Question 1
    1 / -0

    The argument of the complex number $$\sin \dfrac {6\pi}{5}+i\left(1+\cos \dfrac {6\pi}{5}\right)$$ is

  • Question 2
    1 / -0

    Let $$a, b, c\epsilon R_{0}$$ and $$1$$ be a root of the equation $$ax^{2} + bx + c = 0$$, then the equation $$4ax^{2} + 3bx + 2c = 0$$ has

  • Question 3
    1 / -0

    If z is a complex number such that $$|z|\ge 2$$, then the minimumm value of $$\left|z+\dfrac{1}{2}\right|$$:

  • Question 4
    1 / -0

    The complex no. $$\dfrac{1+2i}{1-i}$$ lies in which quadrant of the complex plane

  • Question 5
    1 / -0

    If $$z \neq 0$$, then $$ \overset{100}{\underset{0}{\int}}arg(-|z|)dx =$$

  • Question 6
    1 / -0

    If $$z$$ is purely real and $$Re(z)<0$$, then $$arg(x)$$ is

  • Question 7
    1 / -0

    In Argand diagram, O, P, Q represents the origin, $$z$$ and $$z+iz$$
    respectively. then $$\angle OPQ = $$

  • Question 8
    1 / -0

    If $$Z$$ is a complex number such that $$|z| \ge 2$$,
    then the minimum value of $$\left|z + \dfrac{1}{2}\right|$$

  • Question 9
    1 / -0

    If $$\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = 1$$ and $$\arg \left( {{z_1}{z_2}} \right) = 0$$ , then

  • Question 10
    1 / -0

    If $$|z|=1$$ and $$|\omega -1| =1$$ where $$z, \omega \in C$$, then the largest set of values of $$|2z - 1|^2 + | 2\omega -1|^2$$ equals  

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now