Self Studies

Complex Numbers and Quadratic Equations Test 36

Result Self Studies

Complex Numbers and Quadratic Equations Test 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Express the following complex numbers in the standard from $$ a+ib$$ :
    $$ \dfrac{5+\sqrt{2}i}{1-\sqrt{2}i}$$
    Solution
    $$ \dfrac{5+\sqrt{2}i}{1-\sqrt{2}i}$$

    Rationalizing the denominator, we get

    $$ = \dfrac{5+\sqrt{2}i}{1-\sqrt{2}i} \times \dfrac{1+\sqrt{2}i}{1+\sqrt{2}i}$$

    $$ = \dfrac{5+2i^2+(5+1)\sqrt{2}i}{1+2}$$

    $$ = \dfrac{3+6\sqrt{2}i}{1+2}$$......................$$(\because i^2=-1)$$

    $$ = 1+2\sqrt{2}i$$
  • Question 2
    1 / -0
    If $$a$$ and $$b$$ are the nonzero distinct roots of $$x^2 + ax + b =0$$, then the minimum vlue of $$x^2 + ax+b$$ is
    Solution
    Given, $$x^2 + ax + b = 0$$
    For distinct now zero roots
    $$D > 0$$
    $$\Rightarrow a^2 - 4b > 0$$
    Now, $$x^2 + ax + b$$
    $$= \left(x + \dfrac{a}{2}\right)^2 + \left(b-\dfrac{a^2}{4}\right)$$

    $$= \left(x + \dfrac{a}{2}\right)^2 - \left(a^2-\dfrac{4b}{4}\right)$$
    We know, sum of roots $$a + b = -a$$

    $$\Rightarrow 2a + b = 0$$

    Product of roots $$a\times b = b$$
    $$\Rightarrow b(a-1) = 0$$
    $$\Rightarrow a = 1, b \neq 0$$
    From Equation (i),
    $$2a+b = 0$$$
    $$2(1) + b = 0$$
    $$b = -2$$
    Now, $$\left( x + \dfrac{A}{2}\right)^2 - \left(\dfrac{1^2 + 4 \times 2}{4}\right)$$

    $$= \left(x+\dfrac{a}{2}\right)^2 - \dfrac{9}{4}$$

    $$\therefore$$ Maximum value $$= -\dfrac{9}{4}$$
  • Question 3
    1 / -0
    The real part of $$(i - \sqrt{3})^{13}$$ is
    Solution
    $$w^2=\dfrac{-1-i\sqrt3}{2}$$
    $$\Rightarrow iw^2=\dfrac{-i+\sqrt3}{2}$$
    $$\Rightarrow -2iw^2=i-\sqrt3$$
    $$\Rightarrow (-2iw^2)^{13}=(i-\sqrt3)^{13}$$
    $$\Rightarrow -2^{13}i^{13}w^{26}=(i-\sqrt3)^{13}$$
    $$\Rightarrow -2^{13}iw^2=(i-\sqrt3)^{13}$$
    $$\Rightarrow -2^{13}\left({\dfrac{-i+\sqrt3}{2}}\right)=(i-\sqrt3)^{13}$$
    $$\Rightarrow -2^{12}(-i+\sqrt3)=(i-\sqrt3)^{13}$$
    $$\therefore (i-\sqrt3)^{13}=-2^{12}\sqrt3+i2^{12}$$

  • Question 4
    1 / -0
    Mark against the correct answer in each of the following .
    $$i^{326}=$$?
    Solution
    $$i^{326}\\=(i^4)^{81}\times i^2 =(1)^{81}\times (-1)\\=1\times (-1)=-1$$
  • Question 5
    1 / -0
    Mark against the correct answer in each of the following .
    $$i^{91}=$$?
    Solution
    $$i^{91}\\=(1^4)^{22}\times i^3 \\=1\times i^2 \times i\\=1\times (-1)\times i\\=-i$$
  • Question 6
    1 / -0
    $$(1-\sqrt{-1})(1+\sqrt{-1})(5-\sqrt{-7})(5+\sqrt{-7})=?$$
    Solution
    Given expression 
    $$=(1-i)(1+i)(5-\sqrt 7 i)(5+\sqrt 7i)$$
    $$=(1-i^2)(25-7i^2)\\=(1+1)(25+7)\\=(2\times 32)=64$$.
  • Question 7
    1 / -0
    $$arg (-1+i\sqrt{3})=?$$
    Solution
    $$(-1+i\sqrt{3})\\ =\dfrac{-1}{2}+i\dfrac{\sqrt 3}{2} \\=2\left(\cos \dfrac{2\pi}{3}+i\sin \dfrac{2\pi}{3}\right)\\ \Rightarrow arg (-1+i\sqrt{3})=\dfrac{2\pi}{3}$$
  • Question 8
    1 / -0
    For any complex numbers $$z_{1}$$ and $$z_{2}$$ compare List I with with List II and choose the correct answer, using codes given below:
    List IList II
    $$arg (z_{1},z_{2})$$$$\dfrac{\pi}{2}$$
    $$arg \left(\dfrac{z_{1}}{z_{2}}\right)$$$$arg (z_{1}-arg (z_{2})$$
    $$arg (z)+arg (\bar{z})$$$$arg (z_{1})+arg (z_{2})$$
    $$arg (i)$$$$2\pi$$
    Solution

  • Question 9
    1 / -0
    $$(2-3i)(-3+4i)=?$$
    Solution
    $$(2-3i)(-3+4i)\\=(-6+8i+9i-12i^2)\\=(-6+17i+12)\\=(6+17i)$$.
  • Question 10
    1 / -0
    $$arg (1+i)=?$$
    Solution
    $$(1+i)\\=\sqrt 2 \left(\dfrac {1}{\sqrt2}+\dfrac{i}{\sqrt2}\right)\\=\sqrt{2}\left(\cos \dfrac{\pi}{4}+i\sin \dfrac{\pi}{4}\right)\\ \Rightarrow arg (1+i)=\dfrac{\pi}{4}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now