Self Studies

Complex Numbers...

TIME LEFT -
  • Question 1
    1 / -0

    Mark against the correct answer in each of the following .
    $$i^{273}=$$?

  • Question 2
    1 / -0

    $$arg \left(\dfrac{2+6\sqrt{3}i}{5+\sqrt{3}i}\right)=?$$

  • Question 3
    1 / -0

    Compare List I with List II and choose the correct answer using codes given below:

    List I (Complex number)List II (Its modulus)
    $$(4-3i)$$$$10$$
    $$(8+6i)$$$$\dfrac{1}{5}$$
    $$\dfrac{1}{(3+4i)}$$$$1$$
    $$\dfrac{(3-4i)}{(3+4i)}$$$$5$$

  • Question 4
    1 / -0

    Let $$z, w$$ be complex numbers such that $$\bar z + i\bar w =0$$ and arg $$zw = \pi$$. then $$arg \ z$$ equals

  • Question 5
    1 / -0

    The principal argument of the complex number 
    $$[(1 + i)^5 (1 + \sqrt{3}i)^2] / [-2i(-\sqrt{3} +i)]$$ is

  • Question 6
    1 / -0

    Let $$a, b $$ and $$ c $$ be real numbers such that $$ 4 a+2 b+c=0 $$ and $$ a b>0 . $$ Then the equation $$ a x^{2}+b x+c=0 $$ has

  • Question 7
    1 / -0

    If $$ b_{1} b_{2}=2\left(c_{1}+c_{2}\right), $$ then at least one of the equations $$ x^{2}+b_{1} x $$ $$ +c_{1}=0 $$ and $$ x^{2}+b_{2} x+c_{2}=0 $$ has

  • Question 8
    1 / -0

    The modulus and amplitude of the complex number $$\left[e^{{3}-i\dfrac{\pi}{4}}\right]^{3}$$ are respectively.

  • Question 9
    1 / -0

    If roots of quadratic equation $$x^2-kx+4=0$$ then $$k$$ will be 

  • Question 10
    1 / -0

    Nature of roots of quadratic equation $$4x^2-12x-9=0$$ is:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now