Self Studies

Complex Numbers and Quadratic Equations Test 37

Result Self Studies

Complex Numbers and Quadratic Equations Test 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Mark against the correct answer in each of the following .
    $$i^{273}=$$?
    Solution
    $$i^{273}=(i^4)^{68}\times i=(1)^{68}\times i=(1\times i)=i$$
  • Question 2
    1 / -0
    $$arg \left(\dfrac{2+6\sqrt{3}i}{5+\sqrt{3}i}\right)=?$$
    Solution
    $$\dfrac{(2+6\sqrt{3}i)}{(5+\sqrt{3}i)}\\=\dfrac{(2+6\sqrt{3}i)}{(5+\sqrt{3}i)}\times \dfrac{(5-\sqrt{3}i)}{(5-\sqrt{3}i)}\\=\dfrac{(2+6\sqrt{3}i)(5-\sqrt{3}i)}{(5-\sqrt{3}i)(5-\sqrt{3}i)}$$
    $$=\dfrac{(28+28\sqrt{3}i)}{28}\\=\dfrac{28(1+\sqrt{3}i)}{28}=\dfrac{28(1+\sqrt{3}i)}{28}=(1+\sqrt{3}i)=2\left(\cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}\right)$$
    $$\therefore arg\left(\dfrac{2+6\sqrt{3}i}{5+\sqrt{3}i}\right)=\dfrac{\pi}{3}$$
  • Question 3
    1 / -0
    Compare List I with List II and choose the correct answer using codes given below:
    List I (Complex number)List II (Its modulus)
    $$(4-3i)$$$$10$$
    $$(8+6i)$$$$\dfrac{1}{5}$$
    $$\dfrac{1}{(3+4i)}$$$$1$$
    $$\dfrac{(3-4i)}{(3+4i)}$$$$5$$
    Solution

  • Question 4
    1 / -0
    Let $$z, w$$ be complex numbers such that $$\bar z + i\bar w =0$$ and arg $$zw = \pi$$. then $$arg \ z$$ equals
    Solution
    $$\overline{z} + i\overline{w} = 0$$

    $$\Rightarrow z - iw = 0$$

    $$\Rightarrow z = iw$$

          $$arg \space  zw = \pi$$

    $$\Rightarrow arg\space z + arg \space w = \pi$$

    $$\Rightarrow arg \space z + arg \space \dfrac{z}{i} = \pi$$       [Using (1)]

    $$\Rightarrow arg\space z + arg\space z - arg \space i = \pi$$

    $$\Rightarrow 2 arg\space z - \dfrac{\pi}{2} = \pi$$

    $$\Rightarrow 2 arg \space z = \dfrac{3\pi}{2}$$

    $$\Rightarrow arg \space z = \dfrac{3\pi}{4}$$ 
  • Question 5
    1 / -0
    The principal argument of the complex number 
    $$[(1 + i)^5 (1 + \sqrt{3}i)^2] / [-2i(-\sqrt{3} +i)]$$ is
    Solution

  • Question 6
    1 / -0
    Let $$a, b $$ and $$ c $$ be real numbers such that $$ 4 a+2 b+c=0 $$ and $$ a b>0 . $$ Then the equation $$ a x^{2}+b x+c=0 $$ has
    Solution
    $$ a x^{2}+b x+c=0 $$
    $$a, b $$ and $$ c $$ be real numbers and $$4a+2b+c=0$$
    Substituting $$x=2$$ in the quadratic equation
    we have $$4a+2b+c$$ which is zero according to the given condition
    So $$one$$ $$root$$ $$is$$ $$x=2$$ $$which$$ $$is$$ $$real$$
    $$So \space other \space root \space is \space also \space real$$
    Hence the equation has $$ two$$ $$real$$ $$roots$$.
  • Question 7
    1 / -0
    If $$ b_{1} b_{2}=2\left(c_{1}+c_{2}\right), $$ then at least one of the equations $$ x^{2}+b_{1} x $$ $$ +c_{1}=0 $$ and $$ x^{2}+b_{2} x+c_{2}=0 $$ has
    Solution
    Let $$ D_{1}$$ and $$ D_{2} $$ be discriminants of $$ x^{2}+b_{1} x+c_{1}=0 $$ and $$ x^{2}+b_{2} x $$ $$ +c_{2}=0, $$ respectively. 
    Then,
    $$D_{1}+D_{2} =b_{1}^{2}-4 c_{1}+b_{2}^{2}-4 c_{2} $$
    $$=\left(b_{1}^{2}+b_{2}^{2}\right)-4\left(c_{1}+c_{2}\right) $$
    $$=b_{1}^{2}+b_{2}^{2}-2 b_{1} b_{2} \quad\left[\because b_{1} b_{2}=2\left(c_{1}+c_{2}\right)\right]$$ 
    $$=\left(b_{1}-b_{2}\right)^{2} \geq 0$$
    $$ \Rightarrow \quad D_{1} \geq 0 $$ or $$ D_{2} \geq 0 $$ or $$ D, $$ and $$ D_{2} $$ both are positive 
    Hence, at least one of the equations has real roots.
  • Question 8
    1 / -0
    The modulus and amplitude of the complex number $$\left[e^{{3}-i\dfrac{\pi}{4}}\right]^{3}$$ are respectively.
    Solution
    Let $$z=\left[e^{3-i\dfrac{\pi}{4}}\right]^3$$

    $$\implies z=\left[e^3\times e^{-i\dfrac{\pi}{4}}\right]^3$$

    $$\implies z=[e^3]^3\times \left[e^{-i\dfrac{\pi}{4}}\right]^3$$

    $$\implies z=e^9\times e^{-i\dfrac{3\pi}{4}}$$

    This is in the form of $$z=|z|e^{i \text{arg} (z)}$$ where $$|z|$$ is the modulus and $$arg(z)$$ is the argument of $$z$$

    $$\implies |z|=e^9,\text{arg}(z)=-\dfrac{3\pi}{4}$$

    $$\implies $$ modulus is $$e^9$$ and argument is $$-\dfrac{3\pi}{4}$$
  • Question 9
    1 / -0
    If roots of quadratic equation $$x^2-kx+4=0$$ then $$k$$ will be 
    Solution
    Given equation $$x^2-kx+4=0$$
    Comparing it with $$ax^2+bx+c=0$$
    We get $$a=1, b=-k$$ and $$c=4$$
    $$D=b^2-4ac=(-k)^2-4\times 1\times 4=k^2-16$$
    Roots are same 
    $$D=0$$
    $$\Rightarrow k^2-16=0$$
    $$\Rightarrow k^2=16$$
    $$\Rightarrow k=\pm \sqrt{16}$$
    $$\Rightarrow k=\pm  4$$
    Hence, option (C) is correct. 
  • Question 10
    1 / -0
    Nature of roots of quadratic equation $$4x^2-12x-9=0$$ is:
    Solution
    Given equations $$4x^2-12x-9=0$$
    where $$a=4, b=-12, c=-9$$
    Discriminant $$(D)=b^2-4ac$$
    $$=(-12)^2-4\times 4\times (-9)$$
    $$=144+144$$
    $$=288 > 0$$
    Hence, option (B) is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now