Self Studies

Complex Numbers and Quadratic Equations Test 39

Result Self Studies

Complex Numbers and Quadratic Equations Test 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$z_1, z_2$$ be two non zero complex numbers satisfying the equation $$\displaystyle \left | \frac{z_1 + z_2}{z_1 - z_2} \right | = 1$$ then $$\displaystyle \frac{z_1}{z_2} + \left ( \frac{z_1}{z_2} \right )$$ is
    Solution
    let $$\frac{z_{1}}{z_{2}} =x$$
    given $$|\frac{x+1}{x-1}| = 1$$
    $$\Rightarrow |x+1|=|x-1|$$
    Let $$x=a+ib$$
    We get $$|a+1+ib|=|a-1+ib|$$
    $$\Rightarrow a=0$$
    Therefore $$x=ib$$ and $$\overline { x } =-ib$$
    Therefore $$x+\overline { x } =ib-ib=0$$
    So the correct option is $$A$$
  • Question 2
    1 / -0
    Interpret the following equations geometrically on the Argand plane.
    $$1 < |z - 2 - 3 i| < 4$$
    Solution
    We have $$1 < |z - 2 - 3i| < 4$$
    Represents a circle with centre at $$(2, 3)$$ and radius $$r \in (1, 4)$$
    $$ |z - 2 - 3 i| > 1$$ represents the region in the plane outside the circle $$|z - 2 - 3i| = 1$$
    Similarly $$|z - 2 - 3i| < 4$$ represents the region inside the circle $$|z - 2 - 3i| = 4$$
    $$\therefore$$ $$1 < |z - 2 - 3i| < 4$$ represents the annular space between the two circles.
  • Question 3
    1 / -0
    Find the range of real number $$\alpha$$ for which the equation $$z + \alpha |z - 1| + 2i = 0;  z= x + iy$$ has a solution. Find the solution.
    Solution
    $$x+iy+\alpha(\sqrt{(x-1)^{2}+y^{2}})+2i=0$$
    $$x+i(y+2)=\alpha(\sqrt{(x-1)^{2}+y^{2}}$$
    $$x^{2}-(y+2)^{2}+i2x(y+2)=\alpha^{2}((x-1)^{2}+y^{2})$$
    Real part 
    $$x^{2}-\alpha(x-1)^{2}-\alpha(y^{2})=0$$ and 
    Imaginary part 
    $$2x(y+2)=0$$
    $$x(y+2)=0$$
    Either $$x=0 $$or $$y=-2$$ ...if the above equations have a solution.
    Considering y=-2,
    Hence
    $$\alpha\epsilon[-\dfrac{\sqrt{5}}{2},\dfrac{\sqrt{5}}{2}]$$
    Hence
    $$x=\dfrac{5}{2}$$ if $$|\alpha|\neq1$$.
  • Question 4
    1 / -0
    Let $$\displaystyle z=1+i\:b=(a,b)$$  be any complex number, $$\displaystyle a,b,\epsilon R$$ and $$\displaystyle \sqrt{-1}=i.$$ Let $$\displaystyle z\neq 0+0i,arg z=\tan^{-1}\left (\frac{Im\:z}{Re\:z}\right)$$ where $$\displaystyle -\pi<arg z\leq \pi$$ 

    $$\displaystyle arg(\bar{z})+arg(-z)=\left\{\begin{matrix}\pi, \; if\: arg (z)<0 & \\ -\pi, \; if\: arg (z)>0 & \end{matrix}\right.$$

    Let $$z$$ & $$w$$ be non-zero complex numbers such that they have equal modulus values and $$\displaystyle arg z- arg  \bar{w} =\pi,$$ then z equals

    Solution
    Let $$\overline{w}=cos\theta+isin\theta=e^{i\theta}$$

    Therefore

    $$arg(z)=\pi+\theta$$

    Hence $$z=e^{i(\pi+\theta)}$$

    $$=cos(\pi+\theta)+isin(\pi+\theta)$$

    $$=-cos\theta-isin\theta$$

    $$=-\overline{w}$$
  • Question 5
    1 / -0
    If z be a complex number satisfying$$\displaystyle\ z^{4}+z^{3}+2z^{2}+z+1=0$$ then $$\displaystyle\ |z|$$ is 
    Solution
    $${ z }^{ 4 }+{ z }^{ 3 }+2{ z }^{ 2 }+z+1=0$$

    $$\left[ { z }^{ 4 }+2{ z }^{ 2 }+1 \right] +\left[ { z }^{ 3 }+z \right] =0$$

    $$\left[ { z }^{ 2 }+1 \right] \left[ { z }^{ 2 }+1+z \right] =0$$

    $${ z }^{ 2 }+1=0\Longrightarrow z=\pm i$$

    $$\left| z \right| =1$$
    or
    $${ z }^{ 2 }+z+1=0$$

    $$z=\cfrac { -1\pm \sqrt { 1-4 }  }{ 2 } =\cfrac { -1\pm \sqrt { 3i }  }{ 2 } $$

    $$\left| z \right| =\sqrt { \cfrac { 1 }{ 4 } +\cfrac { 3 }{ 4 }  } =1$$
    $$\therefore \boxed { \left| z \right| =1 } $$
  • Question 6
    1 / -0
    If $$z = x+iy$$ and $$w = \dfrac{(1-iz)}{(z-i)}$$, then $$|w| = 1$$ implies that, in the complex plane
    Solution
    Given  $$|w|$$$$=1$$

    $$1=|\dfrac{1-iz}{z-i}|$$

    $$\Rightarrow |z-i|=|1-iz|$$.....(i)

    Now let $$z=x+iy$$
    $$\Rightarrow iz=-y+ix$$

    Put in (i)

    $$\Rightarrow x^{2}+(y-1)^{2}=(y+1)^{2}+x^{2}$$

    $$\Rightarrow (y+1)^{2}-(y-1)^{2}=0$$

    $$\Rightarrow (2y)(2)=0$$

    $$\Rightarrow y=0$$.

    This is the equation of the x-axis.
  • Question 7
    1 / -0
    $$\displaystyle { \left( \frac { \sqrt { 3 } +i }{ 2 }  \right)  }^{ 6 }+{ \left( \frac { i-\sqrt { 3 }  }{ 2 }  \right)  }^{ 6 }=$$
    Solution
    We have $$\displaystyle \frac { \sqrt { 3 } +i }{ 2 } =\frac { i\sqrt { 3 } +{ i }^{ 2 } }{ 2i }  $$ (Here we multiplied the numerator and denominator by $$(-i)$$ on the LHS)
    We get: $$-i\left( \frac { -1+\sqrt { 3 } i }{ 2 }  \right) =i\omega $$ 
    Simliarly applying the same idea we get the steps below:
    and $$\displaystyle \frac { i-\sqrt { 3 }  }{ 2 } =\frac { { i }^{ 2 }-i\sqrt { 3 }  }{ 2i } =-i\left( \frac { -1-\sqrt { 3 } i }{ 2 }  \right) =-i{ \omega  }^{ 2 }$$
    Hence $$\displaystyle { \left( \frac { \sqrt { 3 } +i }{ 2 }  \right)  }^{ 6 }+{ \left( \frac { i-\sqrt { 3 }  }{ 2 }  \right)  }^{ 6 }={ \left( -i\omega  \right)  }^{ 6 }+{ \left( -i{ \omega  }^{ 2 } \right)  }^{ 6 }\\ \\ ={ i }^{ 6 }\left( { \omega  }^{ 6 }+{ \omega  }^{ 12 } \right) =-1\left( 1+1 \right) =-2$$
  • Question 8
    1 / -0
    Let $$\displaystyle\ z_{1}= a+ib, z_{2}= p+iq$$ be two unimodular complex numbers such that $$\displaystyle\ Im(z_{1}z_{2})=1$$. If$$\displaystyle\ \omega_{1}= a+ip, \omega_{2}=b+iq$$ then
    Solution
    $$z_1 = a + ib$$ and $$z_2 = p + iq$$
    Given that $$Im(z_1z_2) = 1$$, so $$aq + bp = 1$$
    Now, $$\omega_1 = a + ip, \omega_2 = b + iq$$
    $$\Rightarrow \omega_1\omega_2 = ab - pq + i(aq + bp)$$
    $$\Rightarrow Im(\omega_1\omega_2) = 1$$

  • Question 9
    1 / -0
    The root of $$(x + a) (x + b) - 8k = (k - 2)^2$$ are real and equal, when $$a,b,c$$ $$\epsilon$$ R, then
    Solution
    The equation:
    $$(x + a) (x + b) - 8k = (k - 2)^2$$
    $$x^2 + x (a + b) - 8k + ab = k^2 + 4 - 4k$$
    $$x^2 + x (a + b) - k^2 - 4k - 4 + ab = 0 $$

    The roots of the equation are real and equal.
    Thus, discriminant = $$0$$
    $$D = 0 $$
    $$(a + b)^2- 4(1)(ab- k^2- 4k - 4)= 0$$
    $$a^2 +b^2 + 2ab - 4ab + 4k^2 + 16 k + 16 = 0 $$
    $$(a - b)^2 + 4(k +2)^2 = 0 $$
    Thus, both $$(a -b) =0$$ and $$(k + 2) = 0$$
    Hence, $$a = b$$ and $$k = -2$$
  • Question 10
    1 / -0
    If $$\displaystyle y^{2}< x$$ and $$\displaystyle x\in \left ( -\infty ,0 \right )$$  then $$y$$ must
    Solution
    Given $$ x $$ is a negative value
    And $$ {y}^{2} < x $$, means it is also a negative value. Ideally, no real value has its square as negative.

    Thus option $$C$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now