Self Studies

Complex Numbers and Quadratic Equations Test -4

Result Self Studies

Complex Numbers and Quadratic Equations Test -4
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the modulus and the principal value of the argument of the number $$1-i$$
    Solution
    Let $$\displaystyle 1=r\cos \theta ,-1=r\sin \theta$$ 
     Squaring and adding these relations, we get $$\displaystyle r^{2}\left ( \cos ^{2}\theta +\sin ^{2}\theta  \right )=1^{2}+\left ( -1 \right )^{2}=2$$.
    Since, $$cos^2\theta+sin^2\theta=1, \Rightarrow r=\pm\sqrt{2}$$
    $$r$$ cannot be negative
    Hence. $$r=\sqrt{2}$$
    Then $$\displaystyle \cos \theta =\dfrac{1}{\sqrt{2}},\sin \theta =\dfrac{-1}{\sqrt{2}},$$ 
    The value of $$\displaystyle \theta $$ between-$$\displaystyle \pi $$ and $$\displaystyle \pi $$ which satisfies these equations is $$\displaystyle -\left (  \pi /4 \right )$$ Thus $$\displaystyle \left | 1-i \right |=r=\sqrt{2}$$  and $$arg (1-i)=-\displaystyle \left ( \pi /4 \right ).$$

    Ans: B
  • Question 2
    1 / -0
    Check whether $$2x^2 - 3x + 5 = 0$$ has real roots or no.
    Solution
    Here the quadratic equation is $$2x^2 - 3x + 5 = 0$$
    Comparing it with $$ax^2+bx+c=0$$, we get
    $$a=2, b=-3, c=5$$
    Therefore, discriminant, $$D=b^2-4ac$$
    $$(-3)^2-4\times 2\times 5$$
    $$=9-40$$
    $$=-31$$
    Here, $$D<0$$
    Therefore the equation has no real roots.
  • Question 3
    1 / -0
    If i = $$\sqrt {-1}, then  1 + i^2 + i^3 -i^6 + i^8 $$ is equal to -
    Solution
    Given, $$i= \sqrt {-1}$$
    $$\therefore 1+i^{ 2 }+i^{ 3 }-i^{ 6 }+i^{ 8 }=1-1-i+1+1$$
    $$=2-i$$
  • Question 4
    1 / -0
    Solve $$\displaystyle \left ( 1-i \right )x+\left ( 1+i \right )y= 1-3i,$$
    Solution
    $$\displaystyle \left ( 1-i \right )x+\left ( 1+i \right )y= 1-3i.$$
    Equating real and imaginary parts, we get
    $$\displaystyle x+y= 1$$ and $$\displaystyle -x+y= -3.$$
    Adding both equations we get $$y=-1$$
    Substituting this value of $$y$$ in any of the 2 equations, we get $$x=2$$
    $$\therefore \displaystyle x= 2, y= -1.$$

    Ans: B
  • Question 5
    1 / -0
    If $$z = \displaystyle \frac{(3 + 4i)(5 - 7 i)}{(7 + 5i)(4 - 3i)}$$ then $$|z| = ?$$
    Solution
    Given, $$z = \displaystyle \frac{(3 + 4i)(5 - 7 i)}{(7 + 5i)(4 - 3i)}$$
    $$\therefore |z| = \displaystyle \frac{|(3 + 4i) ||(5 - 7i)|}{|(7 + 5i)||(4 - 3i)|}$$

    $$= \displaystyle \frac{\sqrt{9 + 16} \sqrt{25 + 49}}{\sqrt{49 + 25} \sqrt{16 + 9}} = 1$$
  • Question 6
    1 / -0
    ($$i^{10}+1) (i^9 + 1)(i^8 +1).......(i+1)$$  equal to 
    Solution
    $$(i^{10}+1) (i^9 + 1)(i^8 +1).......(i+1)$$
    $$=(i^{10}+1) (i^9 + 1)(i^8 +1).......(i^3+1)(i^2+1)(i+1)$$
    $$=(i^{10}+1) (i^9 + 1)(i^8 +1).......(i^3+1)(-1+1)(i+1)[\because i^2=-1]$$
    $$=(i^{10}+1) (i^9 + 1)(i^8 +1).......(i^3+1)(0)(i+1) =0$$

  • Question 7
    1 / -0
    The simplest form of the expression $$\dfrac {10 - \sqrt {-12}}{1 - \sqrt {-27}} $$ is
    Solution

    We need to find simplest form of $$\dfrac{10-\sqrt{-12}}{1-\sqrt{-27}}$$

    $$=\dfrac{10-2i\sqrt{3}}{1-3i\sqrt{3}}$$

    Taking conjugate, we get

    $$=$$ $$\dfrac{10-2\sqrt{-3}}{1-3\sqrt{-3}}\times \dfrac{1+3i\sqrt{3}}{1+3i\sqrt{3}}$$

    $$=$$ $$\dfrac{\frac{10-2\sqrt{-3}}{1-3\sqrt{-3}}}{1^2-(3i\sqrt{3})^2}$$

    $$=$$ $$\dfrac{10+30i\sqrt{3}-2i\sqrt{3}-18i^2}{28}$$

    $$=$$ $$\dfrac{10+28i\sqrt{3}+18}{28}$$

    $$=$$ $$\dfrac{28(1+i\sqrt{3})}{28}$$

    $$=$$ $$1+i\sqrt{3}$$

  • Question 8
    1 / -0
    If $$i^2$$ $$= -1$$, then find the odd one out of the following expressions.
    Solution
    $$i$$ is an imagiary number which has a value of $$i=\sqrt{-1}$$. Then
    A. $$-i^2=-1*-1=1$$
    B. $${(-i)}^2=i^2=-1$$
    C. $$i^4={(i^2)}^2={(-1)}^2=1$$
    D. $${(-i)}^4={(i^2)}^2={(-1)}^2=1$$
    E. $$-i^6=-{(i^2)}^3=-1\times {(-1)}^3=-1\times (-1)=1$$

    All are $$1$$ except option $$B$$ which is $$-1$$.
  • Question 9
    1 / -0
    When $$(3-2i)$$ is subtracted from $$(4 + 7i)$$, then the result is
    Solution
    We need to subtract $$(3-2i)$$ from $$(4+7i)$$
    $$\therefore 4 + 7i - (3 - 2i)$$
    $$=4 + 7i - 3 + 2i $$
    $$= 1 + 9i$$
  • Question 10
    1 / -0
    If $$u = 3 - 5i$$ and $$v = -6 + i$$, then the value of $$(u+v)^2$$ is
    Solution
    $$u=3-5i$$
    $$v=-6+i$$
    $$\therefore  (u+v)^2=[3-5i+[-6+i]$$
                          $$=[-3-4i]^2$$
                          $$=[-3]^2+[-4i]^2+2*[-3]*[-4i]$$
                          $$=9+16i^2+24i$$
                          $$=9+16[-1]+24i$$
                          $$=-7+24i$$
    Option A is correct.




Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now