Self Studies

Complex Numbers and Quadratic Equations Test 42

Result Self Studies

Complex Numbers and Quadratic Equations Test 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$z_1+ z_2 + z_3 = 0$$ and $$|z_1|=|z_2|=|z_3|= 1$$, then area of triangle whose vertices are $$z_1, z_2$$ and $$z_3$$ is:
    Solution
    $${|z^{}_{1}+z^{}_{2}|}^2+{|z^{}_{1}-z^{}_{2}|}^2=2({|z^{}_{1}|}^2+{|z^{}_{2}|}^2)$$  ....... $$(1)$$
    $$z^{}_{1}+z^{}_{2}+z^{}_{3}=0$$
    $$z^{}_{3}=-z^{}_{2}-z^{}_{1}$$                                                     
    By taking modulus both sides
    $$|-z^{}_{3}|=|z^{}_{2}+z^{}_{1}|$$ ......... $$(2)$$
    Using $$(2)$$ in $$(1),$$ we have
    $${|-z_{3}|}^2+{|z^{}_{1}-z^{}_{2}|^2}=2{(1+1)}$$
    $$1+{|z^{}_{1}-z^{}_{2}|^2}=2{(1+1)}$$
    $${|z^{}_{1}-z^{}_{2}|^2}=3$$
    $$|z^{}_{1}-z^{}_{2}|=\sqrt{3}$$
    Similarily $$|z^{}_{2}-z^{}_{3}|$$=$$|z^{}_{3}-z^{}_{1}|=\sqrt{3}$$
    Hence sides of triangle formed are $$\sqrt{3},$$ $$\sqrt{3},$$ $$\sqrt{3}$$ and are equal.
    So triangle formed is an equilateral triangle 
    Area of an equilateral triangle $$=\dfrac{\sqrt{3}}{4}s^2$$
    where $$s$$ is side of equilateral triangle 
    So area of triangle formed by $$z^{}_{1} ,z^{}_{2},z^{}_{3}=3\dfrac{\sqrt{3}}{4}$$
  • Question 2
    1 / -0
    If $${z}_{1},{z}_{2},..{z}_{n}$$ lie on the circle $$|z|=2$$ then the value of $$|{z}_{1},{z}_{2},..{z}_{n}|-4|\dfrac {1}{{z}_{1}}+\dfrac {1}{{z}_{2}}++\dfrac {1}{{z}_{n}}|=$$
    Solution

  • Question 3
    1 / -0
    For $${ { Z }_{ 1 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ 1+i\sqrt { 3 }  }  }  };\quad { { Z }_{ 2 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ \sqrt { 3 } +i }  } ;\quad { { Z }_{ 3 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ \sqrt { 3 } -i }  }  } }$$ which of the following holds good?
  • Question 4
    1 / -0
    For a complex number $$z$$, the minimum value of $$\left | z \right |+\left | z-\cos\alpha-i\sin\alpha \right |$$ is
    Solution

  • Question 5
    1 / -0
    If $$Z_{1},Z_{2}$$ are two complex numbers satisfying $$|\dfrac{Z_{1}-3Z_{2}}{3-Z_{1}Z_{2}}|=1|z_{1}|\neq 3$$ then $$|z_{2}|=$$
    Solution

  • Question 6
    1 / -0
    $$|z-4| < |z-2|$$ represents the region given by?
    Solution

  • Question 7
    1 / -0
    If $$P(x)=a{x}^{2}+bx+c$$ and $$Q(x)=-a{x}^{2}+dx+c$$ where $$ac\ne 0$$, then $$P(x).Q(x)=0$$ has
    Solution

  • Question 8
    1 / -0
    The modulus of $$\overline { 6+{ i }^{ 3 } } +\overline { 6+{ i } }+\overline { 6+{ i }^{ 2 } } $$ is
    Solution

  • Question 9
    1 / -0
    If $$\left| z \right| =1$$ and $$\left| \omega -1 \right| =1$$ where $$z,\omega \in C$$ then the largest set of values of $${ \left| 2z-1 \right|  }^{ 2 }+{ \left| 2\omega -1 \right|  }^{ 2 }$$ equals 
    Solution

  • Question 10
    1 / -0
    The value of $$(z+3) (\overline{z} +3)$$ is eqquivalent to
    Solution
    $$(2+3)(\bar{2}+3)$$
    We know that  $$2.\bar{2}=|2|^{2}$$
                  $$(2+3).(\overline{2+3})$$
                  $$=12+31^{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now