Self Studies

Complex Numbers...

TIME LEFT -
  • Question 1
    1 / -0

    If $$a,b,c$$ are non-zero numbers and the equation $$ax^{2}+bx+c+i=0$$ has purely imaginary roots, then

  • Question 2
    1 / -0

    The function of imaginary roots of the equation $$(x-1)(x-2)(3x+1)=32$$ is 

  • Question 3
    1 / -0

    Let $$z,w$$ be complex numbers such that $$\vec {z}+i\vec {w}=$$ and $$zw=\pi$$ Then $$arg\ z$$ equals

  • Question 4
    1 / -0

    The equation $$x(x+2)(x^{2}-x)=-1$$, has 

  • Question 5
    1 / -0

    If $$\overline { \Delta  } =\begin{vmatrix} -1 & 2-3i & 5+4i \\ 2+3i & 8 & 1-i \\ 5-4i & 1+i & 3 \end{vmatrix}$$ then $$\Delta =$$

  • Question 6
    1 / -0

    Let $$z$$ be a complex number of maximum amplitude satisfying $$|z-3|=Re(z)$$, then $$|z-3|$$ is equal to

  • Question 7
    1 / -0

    Let $$A$$ and $$B$$ represent $$z_{1}$$ and $$z_{2}$$ in the Argand plane and $$z_{1},z_{2}$$ be the roots of the equation $$z^{2}+pz+q=0$$ where $$p,q$$ are complex numbers. If $$O$$ is the origin $$OA=OB$$ and $$\angle AOB=\alpha$$ then $$p^{2}=$$

  • Question 8
    1 / -0

    The number of imaginar roots of the equation $$(x-1)(x-2)(3x-2)(3x+1)=32$$ is

  • Question 9
    1 / -0

    If $$\mathrm{{z} _ { 1 }} = 10 + 6\mathrm{i} ,  \mathrm{{ z } _ { 2 }}= 4 + 6 \mathrm { i }$$ and $$\mathrm{ z}$$ is a complex number such that $$\operatorname { amp } \left( \dfrac { \mathrm { z } - \mathrm { z } _ { 1 } } { \mathrm { z } - \mathrm { z } _ { 2 } } \right) = \dfrac { \pi } { 4 }$$ , then the value of $$\left| \mathrm{z} - 7 - 9 \mathrm { i } \right|$$ is equal to

  • Question 10
    1 / -0

    The number of distinct values of $$x$$ satisfying the equation $$\dfrac { x-2016 }{ 2015 } +\dfrac { x-2015 }{ 2016 } =\dfrac { 2015 }{ x-2016 } +\dfrac { 2016 }{ x-2015 }$$ is/are

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now