Self Studies

Complex Numbers...

TIME LEFT -
  • Question 1
    1 / -0

    $$z_0$$ is the roots of $$1+x+x^2 =0$$ and $$z=3+6iz^{81}_0 - 3z^{93}_0$$, then arg(z) is 

  • Question 2
    1 / -0

    If $$z$$ is a complex number of unit modulus and argument $$\theta$$, then $$arg\left(\dfrac{1+z}{1+\overline{z}}\right)$$ equals 

  • Question 3
    1 / -0

    Let $$z$$, $$w$$ be complex numbers such that $$ \overline { z } +i\overline { w } =0$$ and arg $$\left(ZW\right)= pi$$. Then, arg $$\left(z\right)$$ equals

  • Question 4
    1 / -0

    Argument of the complex number  $$\left( \dfrac { - 1 - 3 i } { 2 + i } \right).$$

  • Question 5
    1 / -0

    If $$z=-1$$, then principal value of arg $$\left({z}^{2/3}\right)$$ is

  • Question 6
    1 / -0

    Arg $$\left\{ sin\dfrac { 8\pi  }{ 5 } +i\left( 1+cos\dfrac { 8\pi  }{ 5 }  \right)  \right\}$$ is equal to

  • Question 7
    1 / -0

    The amplitude of $${ e }^{ { e }^{ -i\theta  } }$$ is equal to

  • Question 8
    1 / -0

    If $$z=-1$$, then principal value of arg $$\left( {z}^{\dfrac{2}{3}} \right )$$ is 

  • Question 9
    1 / -0

    The amplitude of sin $$\dfrac { \pi  }{ 5 } +i\left( 1-cos\dfrac { \pi  }{ 5 }  \right) $$ is 

  • Question 10
    1 / -0

    $$ z _ { 0 } $$ is the roots of $$ 1 + x + x ^ { 2 } = 0 $$ and $$ z = 3 + 6 i z _ { 0 } ^ { 81 } - 3 z _ { 0 } ^ { 93 } . $$ Then $$ \arg ( z ) $$ is-

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now