Self Studies

Complex Numbers and Quadratic Equations Test -5

Result Self Studies

Complex Numbers and Quadratic Equations Test -5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Nature of the roots of the quadratic equation $$2x^{2}-2\sqrt{6}x+3=0$$ is:
    Solution
    (B) $$b^{2}-4ac=(-2\sqrt{6})^{2}-4(2)(3)$$
    $$=24-24$$
    $$=0$$
    $$\therefore $$   Real, rational, equal
  • Question 2
    1 / -0
    Find the value of $$x$$ of the equation $${ \left( 1-i \right)  }^{ x }={ 2 }^{ x }$$ 
    Solution
    Then $${ \left( 1-i \right)  }^{ x }={ 2 }^{ x }$$

    $$\Rightarrow |{(1-i)}|^{x} =|2|^{x}$$

    $$\Rightarrow { \left( \sqrt {1+1}\right)}^{x}={2}^{x}$$

    $$\Rightarrow { \left( \sqrt { 2 }  \right)  }^{ x }={ 2 }^{ x }$$

    $$\Rightarrow \dfrac{x}{2}=x$$

    $$\Rightarrow 2x=x\Rightarrow x=0$$
    Hence, option C is correct.
  • Question 3
    1 / -0
    If the discriminant of a quadratic equation is negative, then its roots are:
    Solution
    If the discriminant $$ b^2 - 4ac $$  of a quadratic equation is negative, then its roots are imaginary. 
  • Question 4
    1 / -0
    For what value of 'm', the equation $$(3m+1)x^{2}+2(m+1)x+m=0$$ have equal root ?
    Solution
    (A) Roots are equal if $$D=0$$
    or  $$b^{2}-4ac=0$$
    $$\Rightarrow 4(m+1)^{2}-4m(3m+1)=0$$
    $$\Rightarrow 2m^{2}-m-1=0$$
    $$ \therefore m = 1, -1/2$$
  • Question 5
    1 / -0
    The roots of $$4x^{2}-2x+8=0$$ are:
    Solution
    Given equation is $$4x^2-2x+8=0$$
    We know value of discriminant $$D=b^{2}-4ac$$
    Here $$a=4, b=-2, c=8$$
    Therefore, $$D=(-2)^{2}-4(4)(8)$$
    $$=4-128$$
    $$=-124< 0$$
    Hence, roots are not real.
  • Question 6
    1 / -0
    Evaluate :
     $$\sqrt{-25} + 3 \sqrt{-4} +2 \sqrt{-9}$$
    Solution
    $$\sqrt{-25} + 3 \sqrt{-4} +2 \sqrt{-9} $$

    $$=5\sqrt{-1}+6\sqrt{-1}+6\sqrt{-1}$$      we know, $$\sqrt{-1}=i$$

    $$= 5i + 6i + 6i = 17i$$
  • Question 7
    1 / -0
    Determine the values of $$p$$ for which the quadratic equation $$2x^2 + px + 8 = 0$$ has equal roots.
    Solution
    In $$ax^2+bx+c=0,$$
    Discriminant $$D$$ $$=b^2-4ac$$,
    D$$=0$$, for the roots to be real and equal

    In $$2x^{2}+px+8=0$$    
    Thus, we have $$a=2 ,b=p$$ and $$c=8$$
    Then $$D$$ $$=b^2-4ac=0$$

    $$\therefore p^{2}-4\times 2\times 8=0\Rightarrow p^{2}-64=0$$

    $$\Rightarrow p=\pm 8$$.
  • Question 8
    1 / -0
    $$\displaystyle \frac{\displaystyle i^{4n + 3} + (-i)^{8n - 3}}{\displaystyle(i)^{12 n- 1} - i^{2 - 16 n}}, n    \varepsilon N$$ is equal to
    Solution
    Given expression 
    $$= \displaystyle \frac{\displaystyle i^3 + (-1) (i)^{-3}}{(-i)^{-1} - (i)^2} = \frac{\displaystyle -i - i}{\displaystyle i + 1}$$
    $$=\displaystyle \frac{\displaystyle -2i}{1 + i} \times \frac{1 - i}{1 - i} = \frac{\displaystyle -2i - 2}{\displaystyle 1 + 1} = - 1 - i$$
  • Question 9
    1 / -0
    1+$$i^2 + i^4 + i^6 + ........+ i^{2n}$$ is
    Solution
    $$1+i^2+i^4+........+i^{2n}$$

    $$=1-1+1-1+1-1......$$

    Hence it can b positive or negative depending on the value of $$2n$$

    Hence It cannot be determined from the given data.
  • Question 10
    1 / -0
    If $$i^2 = - 1$$, then the value of $$\displaystyle \sum^{200}_{n = 1} i^n $$ is
    Solution
    Given, $$i^2=-1$$
    $$\displaystyle \sum_{n = 1}^{200} i^n = i + i^2 + i^3 + ......... + i^{200} = \displaystyle \frac{i (1 - i^{200})}{1 - i} $$           (since G. P.)
    $$= \displaystyle \frac{\displaystyle i (1 - 1)}{\displaystyle 1 - i} = 0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now