Self Studies

Complex Numbers and Quadratic Equations Test -8

Result Self Studies

Complex Numbers and Quadratic Equations Test -8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation $$\sqrt {3x^2+x+5}=x-3$$, where $$x$$ is real, has 
    Solution
    Now, $$3x^2+x+5 \geqslant 0$$

    This is because $$b^2-4ac=1-4\times 5\times 3$$

    $$=-59$$ (roots are imaginary)

    $$3x^2+x+5 =(x-3)^2=x^2+9-6x$$ and $$x-3 \geqslant 0$$

    $$2x^2+7x-4=0$$

    $$2x^2+8x-x-4=0$$

    $$2x(x+4)-1(x+4)=0$$

    $$(2x-1)(x+4)=0$$

    $$x=\dfrac12 \ and -4$$ but $$x\geq 3$$

    $$\therefore$$ No solution.
  • Question 2
    1 / -0
    Let $$\alpha,\ \beta$$ be real and $$\mathrm{z}$$ be a complex number. If $$\mathrm{z}^{2}+\alpha \mathrm{z}+\beta=0$$ has two distinct roots on the line $$Re(z) =1$$, then it is necessary that: 

  • Question 3
    1 / -0
    Let z be a complex number such that $$\left|\dfrac{z-i}{z+2i}\right|=1$$ and $$|z|=\dfrac{5}{2}$$. Then the value of $$|z+3i|$$ is?
    Solution
    Given $$\left|\dfrac{z - i}{z + 2 i } \right| = 1$$

    $$\Rightarrow |z - i| = |z + 2i|$$

    Let $$z = x + iy$$

    So, $$x^2 + (y- 1)^2 = x^2 + (y + 2)^2$$

    $$-2y + 1 = 4y + 4$$

    $$6y = -3 \Rightarrow y = \dfrac{-1}{2}$$

    $$x^2 + y^2 = \dfrac{25}{4} \Rightarrow x^2 = \dfrac{24}{4} = 6$$

    $$z = \pm \sqrt{6} - \dfrac{i}{2}$$

    $$|z + 3i| = \sqrt{6 + \dfrac{25}{4}} = \sqrt{\dfrac{49}{4}} = \dfrac{7}{2}$$

    $$\therefore$$ $$\boxed{|2 + 3i| = \dfrac{7}{2}}.....Answer$$

    Hence option $$'A'$$ is the answer.
  • Question 4
    1 / -0
    If $$z = x + iy$$ and $$\omega = \dfrac{(1 -iz)}{(z-i)}$$, then $$\left|\omega\right| = 1$$ implies that in the complex plane
    Solution
    Given   $$w=\dfrac { 1-iz }{ z-i } $$  and

    $$\left| w \right| =1$$

    $$\Rightarrow \left| \dfrac { 1-iz }{ z-i }  \right| =1$$       ...(1)

    Substitute $$z=x+iy$$ in equation (1)

    $$\Rightarrow \left| \dfrac { 1-i\left( x+iy \right)  }{ \left( x+iy \right) -i }  \right| =1$$

    $$\Rightarrow \left| 1+y-ix \right| =\left| x+i\left( y-1 \right)  \right| \\ \Rightarrow { \left( 1+y \right)  }^{ 2 }+{ x }^{ 2 }={ x }^{ 2 }+{ \left( y-1 \right)  }^{ 2 }\\ \Rightarrow y=0$$

    Therefore z lies on the real axis.

    Ans: B
  • Question 5
    1 / -0
    Let z be a complex number such that the imaginary part of z is nonzero and a = $$z^2 + z + 1$$ is real. Then a cannot take the value
    Solution
    Let $$z=\alpha+i\beta$$. Then 

    $$Im(z^2+z+1)=2\alpha\beta+\beta=0 $$

    $$\Rightarrow \alpha=-\dfrac{1}{2}$$ since $$\beta\neq0$$. Then 

    $$a=\alpha^2-\beta^2+\alpha+1$$

    $$a=\dfrac{3}{4}+\beta$$

    $$a\neq\dfrac{3}{4}$$.   $$[\because \beta\neq0]$$
  • Question 6
    1 / -0
    Express $$\dfrac{1}{(1 -  cos  \theta  +  2  i  sin  \theta)}$$ in the form $$x + iy$$
    Solution
    To   Express  $$ \dfrac{1}{(1-cos\theta +2isin\theta )}$$  in  the  form  $$x+iy$$
    We  have ,  $$ \dfrac{1}{(1-cos\theta +2isin\theta )}$$
    $$ =   \dfrac{1}{(1-cos\theta)  +2isin\theta } \times \dfrac{(1-cos\theta) - 2isin\theta }{(1-cos\theta ) - 2isin\theta }$$

    $$ =  \dfrac{(1-cos\theta -2isin\theta )}{(1-cos\theta )^{2}+(2sin\theta )^{2}}$$
    $$ =  \dfrac{(1-cos\theta -2isin\theta )}{1 + cos^{2}\theta -2cos\theta +4sin^{2}\theta }$$
    $$  =  \dfrac{(1-cos\theta )}{(1-cos\theta )( 3cos\theta + 5)} - \dfrac{2isin\theta }{(1-cos\theta )( 3cos\theta + 5)} $$

    $$ = \dfrac{1}{( 3cos\theta + 5)} - \dfrac{2isin\dfrac{\theta }{2}cos\dfrac{\theta }{2} }{2sin^{2}\dfrac{\theta }{2}( 3cos\theta + 5)}$$
    $$ = \dfrac{1}{( 3cos\theta + 5)} - \dfrac{2cot\dfrac{\theta }{2} }{( 3cos\theta + 5)}i$$

    $$ = \dfrac{1}{( 5 +  3cos\theta )} + \dfrac{(-2cot{\theta }/{2} )}{( 5 +  3cos\theta )}i$$

    Hence  , Option  C
  • Question 7
    1 / -0
    $$\displaystyle \left|\dfrac{\sqrt{3}+i}{(1+i)(1+\sqrt{3}i)}\right|=$$
    Solution
    The value of $$\displaystyle \left |\frac{\sqrt{3} + i}{(1 + i)(1 + \sqrt{3}i)} \right |$$
    $$ = \dfrac{|\sqrt{3} + i|}{|1 + i||1 + \sqrt{3}i|} = \dfrac{\sqrt{3 + 1}}{\sqrt{1 + 1} \times \sqrt{1 + 3}} $$
    $$= \dfrac{2}{2\sqrt{2}} $$
    $$= \dfrac{1}{\sqrt{2}}$$ 
  • Question 8
    1 / -0
    If $$a, b$$ and $$c$$ are real numbers then the roots of the equation $$(x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0$$ are always
    Solution
    Given equation is $$(x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0$$

    $$\Rightarrow 3x^{2} - 2(b + a + c) x + ab + bc + ca = 0$$

    Now, here $$A = 3, B = -2(a + b + c)$$

    $$C = ab + bc + ca$$

    Therefore, $$ D = \sqrt {B^{2} - 4AC}$$

    $$= \sqrt {(-2(a + b + c))^{2} - 4(3)(ab + bc + ca)}$$

    $$= \sqrt {4(a + b +c)^{2} - 12(ab + bc + ca)}$$

    $$= 2\sqrt {a^{2} + b^{2} + c^{2} - ab - bc - ca}$$

    $$= 2\sqrt {\dfrac {1}{2}\left \{(a - b)^{2} - (b - c)^{2} + (c - a)^{2} \right \}} \geq 0$$

    This is always $$\geq 0$$, we have real roots for the equation $$(x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0$$
  • Question 9
    1 / -0
    $$ax^2+bx+c=0$$, where a, b, c are real, has real roots if.
    Solution
    Given equation is $$ax^2+bx+c=0$$ where $$a.b.c$$ are real

    Roots of this equation is given by $$x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}$$
    $$x$$ is real, if $$\sqrt{b^2-4ac}$$ is real.

                   if $$b^{2}-4ac>0$$

                   if $$b^{2}>4ac$$

    Thus, $$x$$ is real iff $$b^2>4ac$$.

    Hence, option B is correct.
  • Question 10
    1 / -0
    If $$z =3+5i$$, then $$z^3+z+198=$$
    Solution
    $$z=3+5i$$

    $$z^{3}=(3+5i)^{3}$$

    $$=3^{3}+3.3^{2}(5i)+3.3(5i)^{2}+(5i)^{3}$$

    $$=27-125i+135i-225$$

    $$=-225+27+(135-125)i$$

    $$=-198+10i$$

    $$\therefore z^{3}+z+198$$

    $$=-198+10i+3+5i+198$$

    $$=3+15i$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now