Self Studies

Permutations and Combinations Test 37

Result Self Studies

Permutations and Combinations Test 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    There are $$31$$ objects in a bag in which $$10$$ are identical, then the number of ways of choosing $$10$$ objects from bag is?
    Solution
    $$^{21}C_0+{^{21}C_1}+{^{21}C_2}+.....+{^{21}C_{10}}=\dfrac{2^{21}}{2}=2^{20}$$.
  • Question 2
    1 / -0
    The coefficient of $$x^{18}$$ in the expansion of $$(1+x)(1-x)^{10}\{(1+x+x^2)^9\}$$ is?
    Solution
    Coefficient of $$x^{18}$$ in $$(1+x)(1-x)^{10}(1+x+x^2)^9$$
    $$=$$Coefficient of $$x^{18}$$ in $$(1-x)^2\{(1-x)(1+x+x^2)\}^9$$
    $$=$$Coefficient of $$x^{18}$$ in $$(1-x^2)(1-x^3)^9$$
    $$={^9C_6}=0=84$$.
  • Question 3
    1 / -0
    A team of three persons with at least one boy and atleast one girl is to be formed from $$5$$ boys and $$n$$ girls. If the number of sum teams is $$1750$$, then the value of $$n$$ is
    Solution
    Given $$5$$ boys, $$n$$ girls
    $$(1B,2G)+(2B,1G)$$
    $${ _{  }^{ 5 }{ C } }_{ 1 }.{ _{  }^{ n }{ C } }_{ 2 }+{ _{  }^{ 5 }{ C } }_{ 2 }.{ _{  }^{ n }{ C } }_{ 1 }=1750\Rightarrow 5.\cfrac { n(n-1) }{ 2 } +10.n=1750\Rightarrow \cfrac { n(n-1) }{ 2 } +2n=350\Rightarrow { n }^{ 2 }-n+4n=700$$
    $${ n }^{ 2 }+3n-700=0\Rightarrow (n+28)(n-25)=0\Rightarrow n=25,-28$$
    n $$\neq -28$$ as number of teams cannot be negative
  • Question 4
    1 / -0
    If $$\dfrac{1}{6!}+\dfrac{1}{7!}=\dfrac{x}{8!}$$, then $$x=?$$
    Solution
    $$\dfrac{1}{6!}+\dfrac{1}{7!}=\dfrac{x}{8!}\Rightarrow \dfrac{8\times 7}{8\times 7\times (6!)}+\dfrac{8}{8\times (7!)}=\dfrac{x}{8!}$$
    $$\Rightarrow \dfrac{56}{8!}+\dfrac{8}{8!}=\dfrac{x}{8!}\Rightarrow x=56+8=64$$.
  • Question 5
    1 / -0
    $$^{36}C_{34}=?$$
    Solution
    $$^{36}C_{34}={^{36}C_{(36-34)}}={^{36}C_2}=\dfrac{36\times 35}{2}=630$$.
  • Question 6
    1 / -0
    $$\dfrac{^nC_r}{^nC_{r-1}}=?$$
    Solution
    $$\dfrac{^nC_r}{^nC_{r-1}}\\=\dfrac{n!}{(r!)\times (n-r)!}\times \dfrac{(r-1)!\times (n-r+1)!}{n!}\\$$
    $$=\dfrac{(r-1)!\times (n-r+1)\times (n-r)!}{r\cdot (r-1)!\times (n-r)!}\\=\dfrac{(n-r+1)}{r}$$.
  • Question 7
    1 / -0
    There are $$10$$ points in a plane, out of which $$4$$ points are collinear. The number of line segments obtained from the pairs of these points is?
    Solution
    Number of line segments formed by joining pairs of points out of $$10$$ $$={^{10}C_2}=\dfrac{10\times 9}{2}=45$$.
    Number of line segments formed by joining pairs of $$4$$ points $$={^4C_2}=\dfrac{4\times 3}{2}=6$$.
    But, these points being collinear give only one line.
    $$\therefore$$ required number of line segments$$=(45-6+1)=40$$.
  • Question 8
    1 / -0
    If $$^{n}C_3=220$$, then $$n=?$$
    Solution
    $$^nC_3=220\Rightarrow \dfrac{n(n-1)(n-2)}{6}=220$$
    $$\Rightarrow n(n-1)(n-2)=1320$$
    $$\Rightarrow n=12$$    $$[\because 12\times 11\times 10=1320]$$.
  • Question 9
    1 / -0
    If $$^nC_{10}={^{n}C_{14}}$$, then $$n=?$$
    Solution
    $$^nC_p={^nC_q}\Rightarrow p+q=n$$.
    $$\therefore {^nC_{10}}={^{n}C_{14}}\Rightarrow n=(10+14)=24$$.
  • Question 10
    1 / -0
    If $$^{n}C_r+{^nC_{r+1}}={^{n+1}C_x}$$, then $$x=?$$
    Solution
    We know that $$^{n}C_r+{^nC_{r+1}}={^{n+1}C_{r+1}}$$.
    So, $$x=(r+1)$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now