Self Studies

Permutations and Combinations Test 39

Result Self Studies

Permutations and Combinations Test 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$12$$ persons meet in a room and each shakes hands with all the others. How many handshakes are there?
    Solution
    Number of handshakes $$={^{12}C_2}=\dfrac{12\times 11}{2}=66$$.
  • Question 2
    1 / -0
    Out of $$5$$ men and $$2$$ women, a committee of $$3$$ is to be formed. In how many ways can it be formed if at least one woman is included in each committee?
    Solution
    We may have:
    (i) $$1$$ woman and $$2$$ men or (ii) $$2$$ women and $$1$$ man.
    $$\therefore$$ required number of ways$$=(^2C_1\times {^5C_2})+(^2C_2\times {^5C_1})=\left(2\times \dfrac{5\times 4}{2\times 1}\right)+(1\times 5)$$
    $$=(20+5)=25$$.
  • Question 3
    1 / -0
    If a denotes the number of permutation of $$x+2$$ things taken all at a time, $$b$$ the number of permutation of x things taken 11 at a time and c the number of permutation of $$x-11$$ things taken all at a time such that $$a=182 bc$$, then the value of $$x$$ is
    Solution

  • Question 4
    1 / -0
    The exponent of 3 in $$100!$$ is 
    Solution

  • Question 5
    1 / -0
    The total number of 5- digit telephone numbers that can be composed with distinct digits, is
    Solution

  • Question 6
    1 / -0
    The letters of word 'ZENITH' are written in all positive ways. If all these words are written in the order of a dictionary, then the rank of the word 'ZENITH' is
    Solution
    The total number of words is $$6! = 720$$. Let us write the letters of word ZENITH alphabetically, i.e, EHINTZ.
    For ZENITH word starts withWord starting withNumber of words
    $$Z$$$$E$$$$5!$$
    $$H$$$$5!$$
    $$I$$$$5!$$

    $$N$$$$5!$$

    $$T$$$$5!$$
    ZENZEH$$3!$$

    ZEI$$3!$$
    ZENIZENH$$2$$
    ZENITZENIH$$1$$
    Total number of words before ZERNITH$$615$$
    Hence, there are $$615$$ words before ZENITH, so the rank of ZENITH is $$616$$.
  • Question 7
    1 / -0
    If $$^{n}C_{3} + ^{n}C_{4} > ^{n + 1}C_{3}$$, then
    Solution
    $$^{n}C_{3} + ^{n}C_{4} > ^{n + 1}C_{3}$$
    $$\Rightarrow ^{n + 1}C_{4} > ^{n + 1}C_{3} (\because ^{n}C_{r} + ^{n}C_{r + 1} = ^{n + 1}C_{r + 1})$$
    $$\Rightarrow \dfrac {^{n + 1}C_{4}}{^{n + 1}C_{3}} > 1$$
    $$\Rightarrow \dfrac {n - 2}{4} > 1$$
    $$\Rightarrow n > 6$$.
  • Question 8
    1 / -0
    Find the values of $$ ^{61}C_{57} -^{60}C_{56} $$
    Solution
    $$ ^{61}C_{57} -^{60}C_{56} = ^{60+1}C_{57} -^{60}C_{56} $$
    $$ =(^{60}C_{57} + ^{60}C_{56}) - ^{60}C_{56} $$
    $$ ( \because ^{n+1}C_r = ^nC_r + ^nC_{r-1}) $$
    $$ =^{60}C_{57} + ^{60}C_{56} -^{60}C_{56} $$
    $$ =^{60}C_{57} $$
    hence option (B) correct.
  • Question 9
    1 / -0
    If $$ ^{15}C_{3r} = ^{15}C_{r+3} $$ then r equal to :
    Solution
    $$ ^{15}C_{3r} =^{15}C_{r+3} $$
    $$ \Rightarrow ^{15}C_{3r} =^{15}C_{15-(r+3) } ( \because ^nC_r = ^nC_{n-r}) $$
    $$ \Rightarrow ^{15}C_{3r} =^{15}C_{12-r} $$
    On comparing $$ 3r = 12 -r $$
    $$ \Rightarrow 3r +r = 12 $$
    $$  \Rightarrow  4r = 12 $$
    $$ \Rightarrow  r = 3 $$
    hence option (C) is correct.
  • Question 10
    1 / -0
    $$ ^{ 47 }C_{ 4 }$$ +$$ \sum _{ r=1 }^{ 5 }$$ .$$^{ 52-r }C_{ 3 } $$is equal to :

    Solution
    $$ = ^{47}C_4+ ^{ 52-1}C_3 + ^{52-2}C_3 + ^{52-3}C_3 + ^{52-4}C_3 +^{52-5}C_3 $$
    $$ =^{47}C_4 + ^{51}C_3 + ^{50}C_3 + ^{49}C_3 +^{4}C_3 + ^{47}C_3 $$
    $$ =(^{47}C_4 + ^{47}C_3) + ^{4}C_3 +^{49}C_3 +^{50}C_3 +^{51}C_3 $$
    $$ = (^{48}C_4 +^{48}C_3 + ^{49}C_3 +^{50}C_3 +^{51}C_3 $$
    $$( \because ^nC_r + ^nC_{r-1} = ^{n+1}C_r) $$
    $$ = (^{49}C_4 +^{49}C_3) + ^{50}C_3 + ^{51}C_3)( \because ^nC_r + ^nC_{r-1} = ^{n+1}C_r) $$
    $$ =(^{50}C_4 + ^{50}C_3) + ^{51}C_3 )(\because ^nC_r +^nC_{r-1} = ^{n+1}C_r) $$
    $$ =(^{51}C_4 + ^{51}C_3 \quad ( \because ^nC_r +^nC_{r-1} = ^{n+1}C_r )$$
    $$ =^{52}C_4 \quad ( \because ^nC_r + ^nC_{r-1} = ^{n+1}C_r )$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now