Self Studies

Permutations and Combinations Test 48

Result Self Studies

Permutations and Combinations Test 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Sum of series : $$\sum_\limits{r=1}^n (r^2+1)( r! )$$ is _______
    Solution

  • Question 2
    1 / -0
    There are infinite, alike, blue, red, green and yellow balls. Find the number of ways to select $$10$$ balls.
    Solution

  • Question 3
    1 / -0
    Let $$(1+x)^n=C_0+C_1x+C_2x^2+.....+C_nX^n$$. (where $$C_r=^nC_r$$)
    On the basis of given information, answer the following question.
    $$C_1-3(C_3)+5(C_5)-7(C_7)+$$_______ is?
    Solution

  • Question 4
    1 / -0
    Maximum number of common chords of a parabola and a circle can be equal to
    Solution
    parabola $$ eq^n : x^2 = 4ay ...(1)$$

    circle $$ eq^n : x^2 +y^2 + 2fx + 2gy + h =0 ...(2)$$

    substituting (1) in(2) $$ [y = x^2 / 4a]$$

    $$ x^2 + \dfrac{x^2}{(4a)^2}+2fx + 2gy +h = 0 $$

    This is a degree 4 polynomial and has 4 distinct real roots,

    so point of interaction b/w circle & parabola $$ \Rightarrow 4 $$

    Since common chords can be formed poly any
    $$2$$ points out of $$4$$ point of interaction.

    $$ \therefore $$ common chords $$ = ^{4}C_{2} = \dfrac{4\times 3 }{2 \times 1} = \boxed{6}$$
    (option C)
  • Question 5
    1 / -0
    In a certain examination paper, there are $$n$$ question. For $$j = 1, 2....n$$, there are $$2^{n-j}$$ students who answered $$j$$ or more questions wrongly. If the total number of wrong answers is $$4095$$, then the value of $$n$$ is:
    Solution

  • Question 6
    1 / -0
    How many $$10-digit$$ numbers can be formed by using the digits $$1$$ and $$2$$?
    Solution

    Each place of a ten digit number can be fixed by any of the two digits. So, the number of ways to form a ten digit number is $${2^{10}}$$.

  • Question 7
    1 / -0
    The value of $$\displaystyle\sum^{10}_{r=0}(r)$$ $$^{20}C_r$$ is equal to?
    Solution

    $$\begin{matrix} \sum  _{ r=0 }^{ 10 }(r){ \, ^{ 20 } }{ C_{ r } } \\ \Rightarrow 0{ +^{ 20 } }{ C_{ 1 } }+{ 2^{ 20 } }{ C_{ 2 } }+{ 3^{ 20 } }{ C_{ 3 } }+............+{ 10^{ 20 } }{ C_{ 10 } } \\ \Rightarrow 20+20\times 19+\dfrac { { 20\times 19\times 18 } }{ 2 } +.........+10\times \dfrac { { 20! } }{ { 10!\times 10! } }  \\ \Rightarrow 20\left[ { 1+19+\dfrac { { 19\times 18 } }{ 2 } +\dfrac { { 19\times 18\times 17 } }{ 6 } +...........+\dfrac { { 10\times 19! } }{ { 10!\times 10! } }  } \right]  \\ \Rightarrow 20\left[ { 1+19+\dfrac { { 19\times 18 } }{ 2 } +\dfrac { { 19\times 18\times 17 } }{ 6 } +.........+\dfrac { { 19! } }{ { 9!\times 10! } }  } \right]  \\ \, \, \, \, \, \, 20\left[ { ^{ 19 }{ C_{ 0 } }{ +^{ 19 } }{ C_{ 1 } }{ +^{ 19 } }{ C_{ 2 } }{ +^{ 19 } }{ C_{ 3 } }+..........{ +^{ 19 } }{ C_{ 10 } } } \right] \, \, \, \, Ans. \\  \end{matrix}$$

  • Question 8
    1 / -0
    What is the value of $$^nC_n$$?
    Solution

  • Question 9
    1 / -0
    Let $$S$$ be the set of $$6$$ digits numbers $$a_{1},a_{2},a_{3},a_{4},a_{5},a_{6}$$ (all digits distinct) where $$a_{1}>a_{2}>a_{3}<a_{4}>a_{5}<a_{6}$$. Then $$n(S)$$ is equal to
  • Question 10
    1 / -0
    A library has $$'a'$$ copies of one book, $$'b'$$ copies of each of two books, $$'c'$$ copies of each of three books, and single copy each of $$'d'$$. The total number of ways in which these books can be arranged in a row is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now