Self Studies

Permutations an...

TIME LEFT -
  • Question 1
    1 / -0

    $$\dfrac { { C }_{ 1 } }{ { C }_{ 0 } } +\dfrac { 2{ C }_{ 2 } }{ { C }_{ 1 } } +\dfrac { { 3C }_{ 3 } }{ { C }_{ 2 } } +.....+\dfrac { { nC }_{ n } }{ { C }_{ n-1 } } =$$

  • Question 2
    1 / -0

    The number of odd numbers lying between 40000 and 70000 that can be made from the digits 0, 1, 2, 4, 5, 7 if digits can be repeated any number of times is 

  • Question 3
    1 / -0

    If $${a_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}},} $$ then $${a_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}},} $$ equals 

  • Question 4
    1 / -0

    $${  }^{ n-2 }{ C }_{ r }+2{  }^{ n-2 }{ C }_{ r-2 }+{  }^{ n-2 }{ C }_{ r-2 }$$ equals:

  • Question 5
    1 / -0

    Total number of 6-digit numbers in which all the odd digits and only odd digits appears, is

  • Question 6
    1 / -0

    $$\sum\limits_{r = 1}^n {\frac{{r{.^n}{C_r}}}{{^n{C_{r - 1}}}}} $$ is equal to:

  • Question 7
    1 / -0

    If $$^{2n}C_3$$ : $$^{n}C_2$$ : : $$44 : 1$$, then the value of n is 

  • Question 8
    1 / -0

    $$\sum _{ r=0 }^{ n-1 }{ \frac { {  }^{ n }{ C }_{ r } }{ {  }^{ n }{ C }_{ r }+{  }^{ n }{ C }_{ r+1 } }  } $$ is equal to :

  • Question 9
    1 / -0

    The value of $$^{50}{C_4} + \sum\limits_{r = 1}^6 {^{56 - r}{c_3}} $$ is 

  • Question 10
    1 / -0

    If $$_{  }^{ n-1 }{ { C }_{ r } }=({ k }^{ 2 }-3)_{  }^{ n }{ { C }_{ r+1 } }$$, then k belongs to :

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now