Self Studies

Permutations an...

TIME LEFT -
  • Question 1
    1 / -0

    The value of the expression $${  }^{ n+1 }{ C }_{ 2 }+2[{  }^{ 2 }{ C }_{ 2 }+{  }^{ 3 }{ C }_{ 2 }+{  }^{ 4 }{ C }_{ 2 }+.....+{  }^{ n }{ C }_{ 2 }]$$ is

  • Question 2
    1 / -0

    The value of $${  }^{ 15 }{ C }_{ 8 }+{  }^{ 15 }{ C }_{ 9 }-{  }^{ 15 }{ C }_{ 6 }-{  }^{ 15 }{ C }_{ 7 }$$ is :

  • Question 3
    1 / -0

    Number of positive integers  $$n ,$$  less than  $$17 ,$$  for which  $$n ! + ( n + 1 ) ! + ( n + 2 ) !$$  is an integral multiple of  $$49$$  is

  • Question 4
    1 / -0

    $$\left( \begin{matrix} 51 \\ 3 \end{matrix} \right) +\left( \begin{matrix} 50 \\ 3 \end{matrix} \right) +\left( \begin{matrix} 49 \\ 3 \end{matrix} \right) +\left( \begin{matrix} 48 \\ 3 \end{matrix} \right) +\left( \begin{matrix} 47 \\ 3 \end{matrix} \right) +\left( \begin{matrix} 47 \\ 4 \end{matrix} \right) $$ is equal to (where $$\left( \begin{matrix} n \\ r \end{matrix} \right) $$ denotes $$_{  }^{ n }{ { C }_{ r } }$$

  • Question 5
    1 / -0

    The value of $$\frac{{^{11}{C_0}}}{1} + \frac{{^{11}{C_1}}}{2} + \frac{{^{11}{C_2}}}{3} + ....... + \frac{{^{11}{C_{11}}}}{{12}}$$ will be 

  • Question 6
    1 / -0

    How many combinations can be formed of 8 counters marked 1 2 ..... 8 taking 4 at a time there being at lest one odd and even numbered in each combination? 

  • Question 7
    1 / -0

    $$\sum _{ r=1 }^{ n }{ \left\{ \sum _{ { r }_{ 1 }=0 }^{ r-1 }{ ^{ n }{ C }_{ r }^{ n }{ C }_{ { r }_{ 1 } }{ 2 }^{ { r }_{ 1 } } }  \right\}  } =$$

  • Question 8
    1 / -0

    Which of the following is not true?

  • Question 9
    1 / -0

    $$
    ^{47} C_{r}+\sum_{j=1}^{5}(52-1) C_{3}=
     $$

  • Question 10
    1 / -0

    If $$\sum\limits_{r = m}^n {^r{C_m}{ = ^{n + 1}}{C_{m + 1,}}} $$ then $$\sum\limits_{r = m}^n {{{\left( {n - r + 1} \right)}^r}{C_m}} $$ is equal to 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now